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Abstract
A plasma flow behind a relativistic electron bunch propagating through a cold plasma is found assuming that

the transverse and longitudinal dimensions of the bunch are small and the bunch can be treated as a point charge.
In addition, the bunch charge is assumed small. A simplified system of equations for the plasma electrons is
derived and it is shown that, through a simple rescaling of variables, the bunch charge can be eliminated from
the equations. These equations have a unique solution, with an ion cavity formed behind the driver. The
equations are solved numerically and the scaling of the cavity dimensions with the driver charge is obtained. A
numerical solution for the case of a positively charged driver is also found.
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I. INTRODUCTION

Plasma wakefield acceleration (PWFA) in a highly nonlinear “blowout” regime [1] offers a
promising path toward high-gradient compact future accelerators for numerous applications. Over
the last two decades various aspects of physics involved into the complicated dynamics of plasma
excited by a high-charge driver beam moving with a relativistic velocity has been studied. Un-
fortunately, due to nonlinear nature of the problem, not much can be done analytically beyond
the formulation of the governing system of equations for the plasma flow. Usually, these equa-
tion are solved numerically, and computer simulations are widely accepted as a main tool to study
PWFA [2–4].

While computer simulations are indispensable for testing new ideas and making connections to
the experiment, there is also a strong need for analytical techniques that can allow for quick estimates
and provide scaling relations for the governing parameters of the problem. Another application of
the analytical approach would be a calculation of the longitudinal and transverse wakefields for
the witness bunch accelerated behind the driver beam and the subsequent analysis of the beam
instabilities. The importance of such an analysis for the feasibility of the PWFA concept has been
recently emphasized in Ref. [5].

The perceived need to create an approximate analytical description of the PWFA process has
lead some of the researchers to developing approximate models that incorporate important features
observed in simulations [6, 7]. For example, in Ref. [7] an equation for the shape of the plasma
bubble is derived based on the assumption that the bubble boundary is formed by a single electron
trajectory and the plasma current is localized in a narrow sheath near the boundary. While being a
useful complement to numerical simulations, these models usually lack the rigor of the fundamental
approach and often have an uncertain range of applicability. In particular, it is not clear whether
the model of Ref. [7] can be used for the calculation of wakefields inside the bubble, as assumed in
Ref. [5].

An attempt to develop a consistent analytical model for calculations of the plasma flow in the
blowout regime is made in this paper. We note that a part of the complexity of the problem is
associated with the fact that there are several parameters that control the dynamics of the bubble.
Two of these parameters define the size of the driver bunch: σrkp and σzkp, where σr and σz are
the radial and longitudinal dimensions of the driver and kp = ωp/c =

√
4πn0re, with n0 the plasma

density and re = e2/mc2 the classical electron radius. In our model, we consider the case of a
small-size driver beam, σrkp � 1 and σzkp � 1, and formally take the limit σrkp, σzkp → 0. This
limit eliminates the two parameters from the consideration and simplifies our analysis. While this
regime may be away from an optimal setup for achieving the highest accelerating gradient, it can be
considered as a first approximation to more realistic situations.

We also assume an ultra-relativistic driver beam moving through the plasma with the speed of
light c. This leaves only one external dimensionless parameter—the dimensionless charge of the
beam ν—in the problem [8],

ν = Nrekp =
1

4π

Nk3
p

n0
, (1)

where N is the number of particles in the bunch. The second equality in this relation shows that
within a factor of 1

3 the parameter ν is equal to the ratio of the number of particles in the bunch to
the number of plasma particles in the sphere of radius k−1

p .
To further simplify the problem we focus this paper on the limit of small charges, ν � 1, where,

as we will show below, a remarkably simple scaling for the main bubble parameters can be derived.
This paper is organized as follows. In Section II, we recapitulate the main equations that govern

the plasma flow and in Section III we formulate initial conditions for these equations. In Section IV,
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we develop a simple ballistic model that demonstrates how a bubble is developed when the plasma
self fields are neglected. In Section V, the general system of equations of Section II is simplified
in the limit ν � 1, rescaled and then solved numerically. Various properties of the bubble obtained
from the numerical solution are discussed and related to the ballistic model of Section IV. In Sec-
tion VI, we present analytical formulas that remarkably well approximate some of the properties of
the numerical solution of Section V. In Section VII, we derive the longitudinal electric field Ez on
the axis of the bubble. In Section VIII, a numerical solution for the plasma flow behind a positive
driver is presented. The main results of the paper are summarized in Section IX.

II. FORMULATION OF THE PROBLEM

In this Section, we formulate the equations that describe plasma dynamics behind a point-like
driver moving with the velocity of light along the z axis through a cold plasma of constant density n0.
The charge density of the driver in the cylindrical coordinate system is ρdr = ∓(Ne/2πr) δ(z−ct) δ(r),
where r is the distance from the axis z and the minus sign refers to an electron driver and the plus—to
a positively charged one.

Following the standard convention, we normalize time to ω−1
p , length to k−1

p , velocities to the
speed of light c, and momenta to mc. We also normalize fields to mcωp/e, the charge density to
n0e, the plasma density to n0, and the current density to en0c. Here e is the elementary positive
charge. In these dimensionless units, the charge density of the driver beam is given by the following
expression:

ρdr = ∓
2ν
r
δ(ξ)δ(r), (2)

where ξ = ct − z. The uniform plasma at rest occupies the region in front of the beam ξ < 0. Our
goal is to find the plasma flow and the electromagnetic field behind the driver, in region ξ > 0.

Due to the symmetry of the problem, the plasma flow is axisymmetric. In a steady state, when one
can neglect the transients associated with the entering through the plasma boundary, all the fields
depend on z and t in combination ct − z, that is through the variable ξ. From Maxwell’s equations,
we find the following equations for the non-zero components of the electric and magnetic fields Er,
Ez and Bθ in the cylindrical coordinate system:

1
r
∂

∂r
rBθ =

∂Ez

∂ξ
− jz, (3a)

∂

∂ξ
(Bθ − Er) = − jr, (3b)

∂Ez

∂r
= − jr, (3c)

where j is the plasma current density. The equation for ∇ · E reads:

1
r
∂

∂r
rEr −

∂

∂ξ
Ez = 1 − n. (4)

These equations are complemented by the continuity equation for the electron flow

∂

∂ξ
n(1 − vz) +

1
r
∂

∂r
rnvr = 0. (5)
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In this equation we used nu for the flow density of the electrons, which is valid if at every point
the electron flow is characterized by a unique velocity u. In general, however, the flow behind the
point-like driver may have several streams at a given point, that is there are several values of u at
each point in space. In this case, nu in Eq. (5) should be replaced by

∑
s nsus where the summation

goes over the different values of us with the corresponding densities ns. For notational simplicity,
we drop the sum sign in what follows, unless it is specifically indicated.

The equations of motion for the plasma electrons in the dimensionless variables are

dpr

dt
= −Er + vzBθ,

dpz

dt
= −Ez − vrBθ, (6)

where pr and pz are the radial and longitudinal components of the momentum vector.
Eqs. (3)-(6) should be supplemented by initial conditions for n and u at ξ = 0. These conditions

are derived in the next section.

III. PLASMA CROSSING OF THE DRIVER FIELD

The driver beam propagating through the plasma with the speed of light carries an electromagnetic
field that is localized in an infinitesimally thin “pancake” region in the x − y plane ξ = 0. In what
follows, we will call the field in this region the “driver field”. At a first glance, it might seem that
due to the thinness of the driver field region and the fact that it moves with the speed of light, the
plasma does not have time to modify it, so the field in this region is the same as in the free space:

Er = Bθ = A(r)δ(ξ), (7)

where

A(r) = ∓
2ν
r
. (8)

This assumption, however, is incorrect. As was shown in Ref. [8], the radial currents induced when
electrons cross the driver field modify it in such a way that

A(r) = ∓2νK1(r), (9)

where K1(r) is the modified Bessel function of the second kind. Using the asymptotic expressions
for function K1(x), for small distances, r � 1 (r � k−1

p in dimensional units), we recover from (9)
the free space expression A(r) ≈ ∓2ν/r; in the opposite limit, r � 1, the plasma shields the driver
field to exponentially small values,A(r) ∝ ∓e−r/

√
r.

Plasma electrons from region ξ < 0 encounter the driver field, receive radial and longitudinal
kicks and change their momentum from the initial zero at ξ = 0− to nonzero values pr0 and pz0 at
ξ = 0+. The values pr0 and pz0 can be easily found if one notices that due to an infinitesimally
small thickness of the region of the driver field in the ξ direction, at a given radius r, one can locally
approximate it by a plane electromagnetic wave. A solution for a point charge motion in a plane
electromagnetic field can be found in the literature (see, e.g., [9, 10]); from this solution it follows
that

pr0 = −A, pz0 =
1
2
A2, γ0 = 1 +

1
2
A2, (10)

where γ0 =

√
1 + p2

r0 + p2
z0 is the electron energy corresponding to the momentum (pr0, pz0). Note
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the singularities in pr0 and pz0 when r → 0; these singularities are due to our assumption of the
point driver (they do not appear in the case of a finite value of the driver radius). As we will see
below, they do not cause problems in finding the plasma flow behind the driver.

Integrating the continuity equation (5) through the driver field and noting that both n and vr have
finite values at ξ = 0 (although they are discontinuous at this point) we find that the product n(1− vz)
does not change from ξ = 0− to ξ = 0+. This allows us to find the electron density, n∗, at ξ = 0+,
immediately after the driver field region,

n∗ =
1

1 − vz0
, (11)

where vz0 = pz0/γ0. In the limit r → 0, we have vz0 → 1 and the density (11) also has a singularity
at r = 0.

After crossing the driver field at ξ = 0 the plasma flow is governed by a self-consistent field
that is determined by Eqs. (3). Eqs. (10) and (11) provide the initial conditions for Eq. (5) and the
equations of motion (6). Note that the whole system of equations and the initial conditions have
only one dimensionless external parameter, ν. While equations in this and the previous sections are
valid for arbitrary ν, in the rest of this paper we will focus on the limiting case of a small driver
charge, ν � 1. We will see that in this limit a simple rescaling of the variables eliminates ν from
the equations and shows a universal pattern of the plasma flow with a bubble whose shape and
characteristic parameters are easily found from a simple computational problem.

IV. BALLISTIC APPROXIMATION FOR TRAJECTORIES

Before we analyze the full picture of the plasma flow in the next section, we consider here a
simpler problem of the flow at small distances behind the driver beam, ξ � 1. At these distances we
can neglect the effect of the plasma self-fields on the trajectories of the plasma electrons. We call
this approximation the “ballistic” regime of plasma motion; it assumes that the plasma electrons are
moving with constant velocities defined by Eqs. (10). It provides an insight into the formation of the
bubble and gives an estimate of its dimensions that will be used in the next section.

In the ballistic approximation, particle trajectories in the r-ξ plane are straight lines starting at
ξ = 0 with an offset r0 and going at an angle arctan[vr0/(1 − vz0)] to the horizontal axis,

dr
dξ

=
vr0

1 − vz0
. (12)

As was mentioned in the previous section, we are interested in the regime ν � 1. Assuming, in
addition, that the region of interest is limited by ν � r . 1, we find that one can use Eq. (8) for A,
and also A � 1. It then follows from Eqs. (10) that the electrons are moving with non-relativistic
velocities vr0 � 1 and vz0 � 1. Hence

dr
dξ
≈ vr0 ≈ −A =

2ν
r0
, (13)

and electron trajectories in the ballistic approximation are given by

r = r0 + 2ν
ξ

r0
. (14)

In Eqs. (13) and (14) we have chosen a minus sign specifying an electron driver.
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A set ballistic trajectories is plotted in Fig. 1 where the vertical axis r is normalized by
√
ν. With
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FIG. 1. Ballistic trajectories in the limit A � 1. The envelope of the trajectories is shown by the red line.
There are no electrons in the region below the envelope.

this normalization, the family of the trajectories has a universal shape that does not depend on ν.
The plot clearly shows the formation of the bubble boundary (shown by the red line) below which
all the electrons are evacuated and the electron density is zero. An equation for the boundary, rb(ξ),
is found as an envelope for the trajectories with different r0, dr/dr0 = 0:

rb(ξ) = 2
√

2νξ. (15)

As is seen from Fig. 1, outside of the bubble there are two electron streams at each point r, ξ,
corresponding to two different trajectories passing through the point. One of the trajectories touches
the bubble boundary after, and the other before, it reaches the point r, ξ.

One can also find the density n(r, ξ) of the plasma in region r > rb(ξ). Derivation of a formula
for n(r, ξ) is given in Appendix A. The density is zero below the bubble boundary, r < rb, and has a
singularity n ∝ (r − rb)−1/2 as r → rb (see Eq. (A5)).

V. SMALL-CHARGE REGIME OF THE BUBBLE

There are several important simplifications that can be carried out in the limit ν � 1 as indicated
by the analysis of the ballistic approximation in the previous section. First, the region of the non-
linear plasma flow (the bubble and the adjacent region of a large density perturbation), as it turns
out, is localized at r � 1. This allows us to use Eqs. (10) with A given by (8); in other words,
due to a small transverse size of the flow region, we can neglect the shielding effect in the driver
field. Second, a typical value of A in this regime is also small, A � 1, and plasma velocities in
the dominant part of the flow are non-relativistic. Using these observations, we replace the initial
conditions (10) by the following ones:

vr0 =
2ν
r0
, vz0 ≈ 0. (16)
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We can obtain a crude estimate of the maximal bubble radius, rbm, and the position ξm in the r − ξ
plane where it is attained from the following consideration. The radius rbm is where the ballistically
streaming trajectories start to bend toward the axis and finally collapse under the influence of the
ion focusing field. A plasma electron traveling from ξ = 0 at r ∼ rbm will receive a radial kick
from the ion electric field Er comparable to its initial radial momentum pr0. In dimensional units,
Er ∼ en0rbm, and an electron traveling distance ξm with the speed c − vz ∼ c changes its momentum
by e2n0rbmξm/c. Equating this to pr0 we obtain

e2n0rbm
1
c
ξm ∼ mc|A|, (17)

where on the right-hand side we used the initial radial momentum from (10). On the other hand, for
an estimate, we can use the relation (15) from the ballistic approximation in which rb is replaced by
rbm and ξ by ξm. From these two equations and Eq. (8) for A we find (where we now return to the
dimensionless variables)

rbm ∼
√
ν (18)

and ξm ∼ 1. Because we assume ν � 1, we see that the transverse size of the bubble is much smaller
than its longitudinal extension, rm � ξm,—the bubble has a spindle-like shape. Note also that A
from (8) at r ∼ rm is on the order of |A| ∼

√
ν � 1, and hence the plasma electron motion is indeed

nonrelativistic, as we have assumed above.

Due to the smallness of the electron velocity we can neglect the magnetic force in Eq. (6) and
replace it by a simpler one

dvr

dξ
= −Er, (19)

where we used d/dt = (1−vz)d/dξ ≈ d/dξ. Particle orbits r(ξ, r0) are determined by dr/dξ = vr. The
electric field in this approximation can be found from Eq. (4) in which the term with Ez is neglected
as of higher order in parameter

√
ν,

1
r
∂

∂r
rEr = 1 − n. (20)

Eqs. (19) and (20) supplemented by the continuity equation (5) (in which vz in the first term can
now be neglected) and the initial conditions (16) constitute a full set of equations. An important
feature of these equations is that the only external parameter of the problem, ν, can be eliminated by
a rescaling of the variables. Indeed, it is easy to see that changing the variables:

r → r̃
√
ν, ξ → ξ̃, Er → Ẽr

√
ν, vr → ṽr

√
ν, n→ ñ, (21)

does not change the equations but eliminates ν (replaces it by 1) in Eq. (16).

We solved numerically the rescaled equations by launching a large number Ntr of trajectories
(up to Ntr = 5000) at ξ = 0 with a small radial step ∆r̃0 uniformly distributed from r̃0 = ∆r̃0 to
r̃0 = Ntr∆r̃0 (typical ∆r̃0 ≈ 0.003). The equations of motion for macroparticles were approximated
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as

d
dξ
ṽr,i = −

1
2

r̃i +
1
r̃i

Ntr∑
k=1

r̃0,k∆r̃0η(r̃i − r̃k),

d
dξ

r̃i = ṽr,i, (22)

with the initial conditions

r̃i(0) = r̃0,i = ∆r̃0i, ṽr,i(0) =
2

r̃0,i
, (23)

where the macroparticle number i = 1, 2 . . .Ntr, and η is the Heaviside function, η(x) = 0 at x < 0
and η(x) = 1 at x > 0. The radial electric field was calculated using Eq. (20), by integrating the
electron density over r, with the electron density n found from the conservation of the number of
macro particles. The equations of motion were solved numerically using an adaptive Runge-Kutta
integrator.

Fig. 2 shows the electron trajectories obtained from the numerical solution of the problem. The
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FIG. 2. Electron trajectories in scaled variables r/
√
ν and ξ showing a bubble after the point driver.

bubble radius (the maximal value or r on the boundary) is reached at ξm = 1.57 and is rbm = 2.82
√
ν.

The total bubble length (from ξ = 0 to the point where the bubble boundary collapses on the axis) is
ξb = 3.8 and does not depend on the parameter ν. Note that there are exactly two electron trajectories
passing though each point (r, ξ) outside of the bubble which means a two-stream flow at each point.
In this regard, the plasma flow is similar to the ballistic model.

In the region of not very large values of ξ, ξ . 0.5, the trajectories resemble the ballistic ones
from Fig. 1. From the analysis of Fig. 2, it follows that the bubble boundary before its maximum rbm
(that is ξ < ξm) is comprised of many trajectories for which the boundary is an envelope—the same
mechanism of the boundary formation as in the case of the ballistic model from Section IV. After
the maximum, the boundary is represented by a single trajectory of an electron launched initially at
r0 = 1.44

√
ν. Fig. 3 shows a small number of trajectories that clearly demonstrate a transition from

an envelope structure to a single trajectory boundary (it also shows the boundary calculated in the
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ballistic approximation). After the maximum, it is represented by a single trajectory bent toward the
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FIG. 3. A small number of selected trajectories showing a transition from an envelope bubble boundary to a
single trajectory. The thick blue line shows the ballistic approximation, Eq. (15), for the boundary.

axis by the focusing electric field of the ions.
It is interesting to note that the envelope boundary is different from the assumption made in

Ref. [7] where a differential equation for the bubble boundary was derived assuming that the bound-
ary coincides with an electron trajectory. Our solution in Fig. 2 shows that the derivation of [7] is
not applicable to our case of a small driver charge and dimensions and hence has a limited range of
validity.

Fig. 4 shows plots of the radial electron density distribution at several values of the longitudinal
coordinate ξ. One can see a zero density inside the bubble with a density jump at the bubble boundary

� � � � �
�

�

�

�

�

�

�/ ν

�

� �

��

�

FIG. 4. Electron density distributions in radial directions for various values of ξ: 1) ξ = 0.5, 2) ξ = ξm = 1.57,
3) ξ = 2.5, 4) ξ = 3, 5) ξ = 3.7.
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and a gradual fall off to unity as r → ∞. Before the maximum of rb (curves 1 and 2 in Fig. 4)
the electron density at the boundary has an infinite value, with the singularity of the same type,
n ∝ (r − rb)−1/2, as in the ballistic model. After the maximum (curves 3, 4 and 5), the density value
on the boundary is finite. Note that the density at the boundary increases from curve 4 to 5 due to
the decreasing radius rb; it becomes infinite at ξ = ξb = 3.8 where rb = 0.

The fact that the density perturbation in the limit r → ∞ is relatively small, n − 1 � 1, indicates
that the electron flow at large radial coordinates can be described in linear approximation. We will
use this observation in Section VII in calculation of the longitudinal electric field inside the bubble.

VI. ANALYTICAL CONSIDERATION

It seems unlikely that the numerical solution of the previous section can be also obtained ana-
lytically, however, we found approximate formulas that remarkably well agree with the numerical
results. These formulas are obtained if we replace the ballistic trajectories (14) of Section IV with
electron orbits derived in linear theory. In linear approximation, electrons oscillate with the plasma
frequency, and their orbits, in our dimensionless variables, are given by the following equations:

r = r0 + vr0 sin ξ, v = vr0 cos ξ, (24)

where for vr0 we use Eq. (16), vr0 = 2ν/r0. Strictly speaking, we expect these equations to be valid at
a large distance from the axis, r � 1, but we will now assume that we can use them within a quarter
of the plasma period, 0 < ξ < π/2, for all values of r0. In this way, replacing the straight orbits
with the oscillating ones, we overcome the deficiency of the ballistic approximation that completely
neglects the plasma self field. Note that in the limit ξ � 1 Eqs. (24) reduce to Eqs. (14).

The envelope of trajectories (24) is found from the equation dr/dr0 = 0 which gives

rb(ξ) = 2
√

2ν sin ξ. (25)

Using this equation in the interval 0 < ξ < π/2 we find for the maximal radius of the bubble and the
location of the maximum:

rbm = 2
√

2ν, ξm =
π

2
, (26)

in a remarkable agreement with the numerical values for ξm = 1.57 and rbm = 2.82
√
ν of the previous

section.
As was mentioned in the previous section, in region ξ > ξm = π/2, the bubble boundary is a

single electron trajectory. This trajectory is easily found from Eqs. (19), (20) in which we now set
n = 0 (because the electron density is zero inside the bubble). The electric field on this trajectory is
Er = 1

2 r which gives for the orbit the following equation

d2rb

dξ2 +
1
2

rb = 0. (27)

Its solution in the region ξ > ξm that matches the initial value rb(ξm) = rbm with an addition condition
r′b(ξm) = 0 is

rb(ξ) = 2
√

2ν cos
[

1
√

2

(
ξ −

π

2

)]
, (28)
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where we have used Eq. (26). As follows from this formula, the bubble boundary collapses on the
axis at ξ = π

2 (1 +
√

2) = 3.79, again in a remarkable agreement with the numerical value for ξb from
the previous section.

Comparison of the analytical expressions for the bubble boundary (25) and (28) with the numeri-
cal solution is shown in Fig. 5—they agree very well in the whole interval 0 < ξ < ξb.
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FIG. 5. Comparison of the analytical expression for the bubble boundary (25) and (28) (red dots) with the
numerical solution (solid line).

VII. LONGITUDINAL ELECTRIC FIELD IN THE BUBBLE

We will now discuss how to calculate the longitudinal electric field Ez(ξ) inside the bubble, on the
axis r = 0. We first integrate Eq. (3c),

Ez(ξ) =

∫ ∞

rb

dr′
2∑

s=1

ns(r′, ξ)vrs(r′, ξ), (29)

where we chose the integration constant from the requirement that Ez → 0 when r → ∞. The sum
over index s in this equation goes over the two electron streams at a given point r, ξ, as discussed
in Section V. Unfortunately, an attempt to apply this equation to the numerical solution of the pre-
vious section shows that the integral logarithmically diverges at the upper limit, because vr at large
distances falls off as 1/r. This happens because we neglected the screening effect of the plasma at
r � 1. To include the screening effect into calculations, we split the integration interval in (29) into
two parts choosing some value r∗ such that rbm � r∗ � 1: the integral from r to r∗ is computed us-
ing the numerical solution, and the contribution from the region r > r∗ is calculated analytically. At
large distances, r > r∗, we can use a linear theory of plasma oscillations because the initial velocity
perturbation vr0 is small. In the linear theory, vr oscillates with the plasma frequency (cf. Eq. (24)),

vr = vr0 cos ξ ≈ 2νK1(r) cos ξ, (30)
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where we have used in the expression for the velocity the value ofA given by Eq. (9), thus including
the effect of the screening. Since the velocity vr is small, we can neglect the density perturbation
and replace n by unity which gives for the contribution to Ez

2ν cos ξ
∫ ∞

r∗
drK1(r) = 2νK0(r∗) cos ξ ≈ 2ν

(
ln

2
r∗
− γE

)
cos ξ, (31)

where K0 is the modified Bessel function of the second kind, γE ≈ 0.577 is Euler’s constant and we
have used an asymptotic expression for K0 in the limit r∗ � 1. Hence we obtain

Ez(ξ) =

∫ r∗

rb

dr′
2∑

s=1

ns(r′, ξ)vrs(r′, ξ) + 2ν
(
ln

2
r∗
− γE

)
cos ξ. (32)

We now introduce R = r∗/
√
ν; since rbm = 2.82

√
ν, choosing R � 1 makes r∗ � rbm. We then write

Ez = Ez1 + Ez2, (33)

where

Ez1(ξ) =

∫ R
√
ν

r
dr′

2∑
s=1

ns(r′, ξ)vrs(r′, ξ) + 2ν
(
ln

2
R
− γE

)
cos ξ, (34)

and

Ez2(ξ) = −ν ln (ν) cos ξ. (35)

The contribution Ez1 is computed by solving the plasma flow in the region 0 < r < R
√
ν and

numerically calculating the integral in (34) using this solution. As follows from the derivation, Ez1
actually does no depend on R: the change in the integral due to the variation of R is compensated
by the logarithm in the second term in (34). Moreover, looking at the scalings (21) we conclude that
Ez1 is linearly proportional to ν. Hence, it can only be computed once, and then used for different
values of ν by a simple rescaling. The second term, Ez2, is nonlinear in ν, but has an explicit simple
analytical form.

To illustrate the calculation of Ez we show in Fig. 6 the plots of Ez1/ν and Ez/ν calculated with
the help of Eqs. (33)-(35). Note that Ez1/ν does not depend on ν while Ez/ν has a part (35) that
logarithmically depends on ν; the plot of Ez/ν in Fig. 6 corresponds to ν = 0.1. The black line
shows Ez calculated with R = 40, and the red dots indicate the result of the calculation of Ez with
R = 20. The agreement between these two calculations corroborate the statement that Eq. (34)
uniquely defines Ez1 independent of the value of R.

One can see from Fig. 6 that the field Ez changes sign at ξ = 1.69, close to, but somewhat behind,
the location of maximum value of the bubble radius. The sign of Ez is such that electrons inside the
bubble would be decelerated at ξ < 1.69 and accelerated in the region 1.69 < ξ < ξb = 3.8.

VIII. POSITIVE DRIVER BEAM

Equations of Section V can be also used to simulate a positive driver beam of small dimensions
with ν � 1 by changing the sign of vr0 in Eq. (16). All the subsequent equations in that section
remain valid, including the scaling of the variables (21) that eliminates ν from the equations.

We solved numerically the rescaled equations for the positive driver by the same method as for
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FIG. 6. Electric field component Ez1 (blue line) and the total field Ez (black line) on the axis of the bubble. The
plot of Ez/ν corresponds to ν = 0.1. The fields are normalized by parameter ν.

the electron driver—launching a large number of trajectories uniformly distributed over the initial
radial position r0 at ξ = 0 and then tracing them with account of the electric field of the plasma. An
additional complication in numerical algorithm in comparison with the electron driver was caused
by the fact that many trajectories cross the axis of the system generating a density singularity on the
axis. In the tracking algorithm these trajectories were mirror reflected from the horizontal axis in
the r, ξ plane.

Calculated electron orbits in plasma are shown in Fig. 7. Again, as in the case of the electron

� � � � � � � �
�

�

�

�

�

�

ξ

�/
ν

FIG. 7. Electron orbits in plasma for a positive driver.

driver, there are two electron streams at each point r, ξ with different values of density n and velocity
vr. While there is no bubble in this case where electron density is equal to zero, one can see that
there is a rarefaction in plasma trajectories in the region around ξ ≈ 5, r . 1. This is more clearly
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seen in the radial density plots shown in Fig. 8 for several values of ξ. The plasma density in the
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FIG. 8. Electron density distributions in radial directions for various values of ξ: 1) ξ = 1, 2) ξ = 2.5, 3) ξ = 3,
4) ξ = 4, 5) ξ = 8. Note that curve 5 has a maximum outside of the plot area and is seen as two light blue lines
(each one indicated by number 5).

region ξ ≈ 3 − 5 drops considerably below the equilibrium value n0 = 1 before it reaches a spike on
the axis.

IX. SUMMARY

In this paper we studied the plasma flow behind a relativistic electron bunch propagating through
a cold plasma with the velocity of light. We assumed that the dimensions of the bunch are small so
that the bunch can be treated as a point charge. In this model, the governing system of equations for
the plasma contains only one parameter, the dimensionless charge of the driver ν, defined by Eq. (1).
Assuming additionally that ν � 1, we showed that this parameter can be eliminated from the equa-
tions, which then have a unique solution. In this solution, for an electron driver, a bubble is formed
in the plasma from which electrons are evacuated. We showed that the first part of the boundary of
the bubble, before it reaches its maximal radius, is an envelope of many electron trajectories each or
which touches the boundary at one point. The electron density has a singularity at this part of the
boundary. The second part of the boundary consists of a single electron trajectory, and the electron
density is finite at the boundary. Simple analytical expressions were obtained in Section VI that
describe the shape of the boundary with high precision. We found how the shape of the boundary
scales with the driver charge Q: its maximal radius rbm scales as rbm ∝

√
Q, and its length does not

depend on Q.
We also found the longitudinal electric field on the axis of the bubble and showed that it consists

of two parts which have different scalings with Q: the first one is proportional to Q, and the second
one scales as Q ln Q.

Finally, a numerical solution of the plasma equations was obtained for the case of a positively
charged point driver. This solution does not have a bubble, but shows a region of rarefied electron
density at the distance of approximately 5k−1

p behind the driver.
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Appendix A: Radial distribution of the plasma density in ballistic model

In this section we calculate the plasma density behind the driver in the ballistic approximation of
Section IV.

ξ

�

�

�
��+���

��

��

FIG. 9. Two ballistic electron orbits starting from the initial radial positions r0 and r0 + dr0 after interaction
with the driver.

Immediately behind the driver, at ξ = 0+, the plasma density n∗ is given by equation (11). In
non-relativistic approximation that we use in this paper, vz0 � 1, the plasma density after crossing
the line ξ = 0 does not change, n∗ = 1. To find the density at point (ξ, r) we use Eq. (14) for the
electron trajectories. Considering the plasma between two adjacent trajectories 1 an 2 in Fig. 9, from
the continuity of the plasma flow we conclude that n(r, ξ)r |dr| = n∗r0|dr0| = r0|dr0|, from which it
follows that

n(r, ξ) =
r3

0

r|r2
0 − 2νξ|

, (A1)

where we have used (14) to calculate dr/dr0. Note that at some value of ξ the density (A1) becomes
infinite; this turns out to be on the bubble boundary, as follows from the properties of an envelope
of a family of orbits.

The initial radius r0 in this equation should be expressed through r and ξ from Eq. (14):

r0 =
1
2

r ±

√
1
4

r2 − 2νξ =
1
2

r
(
1 ±
√

1 − t
)
, (A2)
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where

t =
8νξ
r2 < 1. (A3)

The two solutions correspond to two trajectories that arrive from different initial radii r0 to a given
point r, ξ. One of these trajectories arrives before and the other one after it touches the envelope.
Correspondingly, at a given ξ, r, we need to sum the two densities for both trajectories.

Substituting (A2) into (A1) we obtain

n±(r, ξ) =
1
2

(
1 ±
√

1 − t
)3∣∣∣ (1 ± √1 − t

)2
− t

∣∣∣ . (A4)

For the total density, after some simplifications, we find

n(r, ξ) = n+(r, ξ) + n−(r, ξ) =
1
2

2 − t
√

1 − t
=

2r2 − r2
b

2r
√

r2 − r2
b

. (A5)

This density has a square root singularity at the boundary of the bubble.
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