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We present derivation and implementation of the multiconfigurational strong-field approximation with
Gaussian nuclear wave packets (MC-SFA-GWP)—a version of the molecular strong-field approximation which
treats all electronic and nuclear degrees of freedom, including their correlations, quantum mechanically. The
technique allows realistic simulation of high-order-harmonic emission in polyatomic molecules without invoking
reduced-dimensionality models for the nuclear motion or the electronic structure. We use MC-SFA-GWP to
model isotope effects in high-order-harmonic-generation (HHG) spectroscopy of methane. The HHG emission
in this molecule transiently involves the strongly vibronically coupled 2F2 electronic state of the CH4

+ cation.
We show that the isotopic HHG ratio in methane contains signatures of (a) field-free vibronic dynamics at the
conical intersection (CI); (b) resonant features in the recombination cross sections; (c) laser-driven bound-state
dynamics; as well as (d) the well-known short-time Gaussian decay of the emission. We assign the intrinsic
vibronic feature (a) to a relatively long-lived (�4 fs) vibronic wave packet of the singly excited ν4 (t2) and
ν2 (e) vibrational modes, strongly coupled to the components of the 2F2 electronic state. We demonstrate that
these physical effects differ in their dependence on the wavelength, intensity, and duration of the driving pulse,
allowing them to be disentangled. We thus show that HHG spectroscopy provides a versatile tool for exploring
both conical intersections and resonant features in photorecombination matrix elements in the regime not easily
accessible with other techniques.
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I. INTRODUCTION

One of the elusive targets being pursued by the rapidly
developing research area of strong-field and attosecond science
is following the electronic and nuclear motion in atoms and
molecules on their natural, atto- and femtosecond time scales
[1–6]. High-order-harmonic spectroscopy (HHS) [7], based
on the celebrated high-order-harmonic-generation (HHG)
process [8,9], is one of the most powerful and versatile tools
in the arsenal of attosecond science. Among other examples
[10,11], it has been successfully employed to image the
“molecular orbitals” [3,12–14] and resolve multiple final states
in strong-field ionization [15,16]; follow evolution of bound
electronic [17–25], rotational [26–28], and nuclear [16,29]
wave packets; monitor electron correlation in atoms [30];
measure molecular chirality [31,32]; resolve the time tunneling
electron emerges from underneath the barrier [33]; probe
strongly driven electrons in the continuum [18,34–36]; and
control attosecond emission from molecules [37,38].

HHG is a highly nonlinear process [9,39], which often
makes the interpretation of experimental results complex
and controversial. Similar to conventional spectroscopies,
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measurement of the isotope effects and quantum-path inter-
ferences in HHG has emerged as one of the most helpful
techniques in the detailed analysis of high-order-harmonic
spectra [15,40–49]. In the form of the PACER (probing
attosecond dynamics by chirp-encoded recollision [50]) exper-
iment, isotope-dependent HHS promises direct access to the
electronic and nuclear dynamics on a few- and subfemtosecond
time scale, including measurement of the phases of the nuclear
wave packets [44,45].

For the electronically simple cases, where the Born-
Oppenheimer (BO) variable separation applies, the theory
underlying PACER experiments is well understood [40,51].
The relevant theory object, the short-time nuclear autocor-
relation function [40], is readily available for most small
molecules [52]. At the same time, the BO assumptions already
fail for one of the first molecules examined with PACER
spectroscopy. In methane, CH4, the key dynamics occur in
the vicinity of a symmetry-required triple electronic surface
intersection in a transiently prepared CH4

+ cation. In larger,
more electronically complex systems, which are beginning to
be explored with HHS [53–60] (see Ref. [61] for a review),
conical intersections and nonseparable vibronic dynamics are
expected to become ubiquitous [62,63].

The effects of the non-Born-Oppenheimer dynamics and
isotope effects in HHG have been studied for more than
20 years [64]. Nonetheless, most of the non-BO numerical
studies of HHG still concern the dynamics of simple, one-
and two-electron diatomics (H2 [65–68], H2

+ [64,66,68–80],
HeH2+ [81]), usually with the additional approximations of
the reduced dimensionality [66–74,77,80,81] or special field
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polarizations [64,75,76,78,79]. Some attempts at extending the
theory of nuclear dynamics in HHG to more general non-BO
systems have been reported in the literature [65,82–97].
Nonetheless, no fully satisfactory solution to this problem,
which requires simultaneous consideration of nonperturbative
continuum electronic dynamics, vibronic dynamics, and their
correlations, has become available so far.

The goal of this work is to extend the strong-field
approximation (SFA) [39,98,99], a nonperturbative theory
underlying much of attosecond science [2,100], to account
for the short-time vibronic dynamics. The rest of this work
is structured as follows. Section II derives the working
expressions for the multiconfigurational strong-field approxi-
mation with Gaussian nuclear wave packets (MC-SFA-GWP).
Section III gives technical details for the MC-SFA-GWP
calculations of HHG emission in methane and deuterated
methane, including the details of the electronic structure
calculations, the diabatization procedure, and integration of
the MC-SFA-GWP equations. Section IV presents the results
of the numerical calculations. Specifically, Sec. IV A discusses
vibronic nuclear autocorrelation function in methane and
analyzes its features in terms of the wave packet composition
and dynamics. Section IV B presents calculated HHG spectra
for three wavelengths (800, 1600, and 2400 nm) and two
intensities (300 and 1000 TW cm−2) of the driving field, and
dissects the physical origin of the observed spectral features.
Section IV C analyzes calculated PACER signals, compares
them to the available experimental data, and makes predictions
for the previously unexplored range of the experimental
parameters. Section V summarizes the results and offers an
outlook for future developments. Finally, some of the technical
aspects of the MC-SFA-GWP derivation and implementation
are relegated to Appendixes A–C.

II. THEORY

Our aim is to model high-order-harmonic emission due to
the short-time, coupled electronic and nuclear dynamics of
a molecular system under the influence of an intense, long-
wavelength (near- to mid-IR) laser field. It is convenient to
write the total Hamiltonian ĤT as a sum of three terms, all of
which may be time dependent [101–103]:

ĤT(t) = P̂0Ĥ0(t)P̂0 + P̂1Ĥ1(t)P̂1 + P̂1V̂L(t)P̂0, (1)

where P̂0 and P̂1 are respectively projectors onto the neutral
and singly ionized spaces. The contribution Ĥ0(t) acts within
the subspace of the neutral states. The term Ĥ1(t) acts within
the subspace of singly ionized states, while the interaction
Hamiltonian V̂L describes laser-induced transitions between
the two spaces. In the dipole approximation and length gauge,

V̂L(t) = e �F(t) ·
N∑
i

�ri, (2)

where �ri are coordinates of the ith electron and �F(t) is the
laser electric field, which is is assumed to be slowly varying.
N is the total number of electrons in the system. In Eq. (1), we
have already neglected the possibility of multiple ionization,
as well as the stimulated recombination process.

A formally exact solution of the time-dependent
Schrödinger equation with Hamiltonian (1) is given by
[99,102,103]

�(�r,�q,t) = Û0(t,t0)�(�r,�q,t0)

− i

h̄

∫ t

t0

dt1ÛT(t,t1)V̂L(t1)Û0(t1,t0)�(�r,�q,t0).

(3)

The propagators Û0, Û1, and ÛT are

ÛX(tj ,ti) = exp

(
− i

h̄

∫ tj

ti

dt ′ĤX(t ′)
)

, (4)

where X = 0,1,T. In Eq. (3), �r and �q are respectively
electronic and nuclear coordinates. We assume that the initial
wave function at time t0 [�(�r,�q,t0)] corresponds to the neutral
species.

Classically, the high-order-harmonic intensity is deter-
mined by the power spectrum of the time-dependent dipole
�d(t). Neglecting contributions arising entirely within the
neutral and cation manifolds, the radiating dipole is given by

�d(t) = − i

h̄

∫
d�r

∫
d �q

∫ t

t0

dt1[Û0(t,t0)�(�r,�q,t0)]∗

× V̂DÛT(t,t1)V̂L(t1)Û0(t1,t0)�(�r,�q,t0) + c.c., (5)

where the recombination dipole operator is

V̂D = e

N∑
i

�ri, (6)

with the sum running over coordinates of all electrons.
Equation (5) can be brought into a computationally tractable

form by introducing an identity operator 1̂, given by a sum
of identity operators within the neutral, singly ionized, etc.,
spaces:

1̂ = 1̂0 + 1̂1 + · · · , (7)

1̂0 =
∑
an

|�a〉〈�a||n〉〈n|, (8)

1̂1 =
∑
bm

|m〉〈m|
∫

d�k[Â1|Xb〉|�kb〉][Â1〈Xb|〈�kb|]. (9)

The identity operator within the neutral space (1̂0) is
defined in terms of the neutral electronic states |�a〉 (which
depend on �r and parametrically on �q) and harmonic nuclear
vibrational states |n〉 (which depend only on �q). Quantity n
is a vector of non-negative integers, with each element nk

defining the excitation level of the kth normal mode of a
reference potential vref(�q), which is chosen for computational
convenience [52,90].

The identity operator within the singly ionized space (1̂1)
contains bound states of the (N − 1)-electron ion |Xb〉 and
the corresponding one-electron scattering states |�kb〉 with
the asymptotic momentum �kb. Functions |�kb〉 depend on the
coordinate of the N th electron �rN . Formally, the sum over b

in Eq. (9) does not include autoionizing states |Xb〉, which
belong to the doubly ionized continuum. Such states are
unlikely to be populated by strong-field ionization, but may
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become important due to electron-correlation effects in the
recombination step [30,104,105]. If the lifetime of such an
autoionizing state is long compared to the laser cycle, its effects
can still be accounted for, by including the state in Eq. (9).

Both |Xb〉 and |�kb〉 depend parametrically on �q. Operator
Â1 antisymmetrizes the product wave function |Xb〉|�kb〉 with
respect to the coordinates of the continuum electron [106,107],

Â1 = 1√
N

[
Î −

N−1∑
i=1

P̂iN

]
, (10)

where Î is the N -electron identity operator, and operator P̂iN

permutes coordinates of the ith and N th electrons. Similar to
the neutral-space identity 1̂0, the nuclear wave function in 1̂1

is expanded in terms of the harmonic vibrational states |m〉 of
the reference potential vref(�q). Because we are not interested
in processes involving multiple ionization, the sum in Eq. (7)
is truncated after 1̂1.

Operator 1̂ as well as the individual 1̂i operators are
idempotent. Identity operators within different subspaces are
assumed to commute:

[1̂0,1̂1] = 0. (11)

This condition is equivalent to the strong orthogonality
assumption for all |�kb〉: 〈

φD
ba

∣∣�kb

〉 = 0, (12)∣∣φD
ba

〉 =
√

N〈Xb|�a〉, (13)

where |φD
ba〉 is the Dyson orbital for the ionization of the neutral

state |�a〉, forming cation |Xb〉.
We now insert operator 1̂ of Eq. (7) to the left and to the

right of each propagator and interaction operator in Eq. (5).
Following the usual SFA assumptions [99,102,103], we also
replace ÛT(t,t1) by a product of the (N − 1)-electron ion
propagator ÛI(t,t1) and the Volkov propagator ÛV(t,t1):

ÛT(t,t1) ≈ ÛI(t,t1)ÛV(t,t1), (14)

ÛV(t,t1)|�k〉

=
∣∣∣∣�k − e

h̄
�A(t1) + e

h̄
�A(t)

〉

× exp

(
−ih̄

2m

∫ t

t1

dt ′
(

�k − e

h̄
�A(t1) + e

h̄
�A(t ′)

)2
)

, (15)

〈�r|�k〉 = 1

(2π )3/2 ei�k·�r , (16)

where �A(t) is the vector potential of the laser field, and Volkov
states |�k〉 are taken in the length gauge. The explicit coordinate
representation of |�k〉 normalized to δ(�k − �k′) is given by
Eq. (16). In the simplest form of the SFA used presently,
the continuum state |�kb〉 does not depend on the nature of
the binding potential. For simplicity, we therefore omit the
subscript b in |�kb〉 from now on. (The dependence of |�k〉 on the
binding potential can of course be reintroduced if necessary
[100,102,103], without materially affecting the overall form of
the MC-SFA-GWP working expressions.) Finally, propagator

ÛI is defined similar to Eq. (4), with the (N − 1)-electron
vibronic Hamiltonian given by ĤI.

Neglecting contributions due to correlation-driven inelastic
electron scattering in the continuum [106,107], we obtain

�d(t) = − i

h̄

∫ t

t0

dt1

∫
d�k

∑
a′′n′′

∑
b′m′

∑
bm

∑
a′′′n′′′

C∗
a′′n′′(t)

× �R∗
b′m′a′′n′′

(
�k − e

h̄
�A(t1) + e

h̄
�A(t)

)
Db′m′bm(t,t1)

× �F(t1) · �Rbma′′′n′′′ (�k)Ca′′′n′′′(t1)e−iφd (�k,t,t1) + c.c., (17)

�Rbman(�k) = e〈m|[〈�k|�r∣∣φD
ba

〉 + 〈�k∣∣ �φC
ba

〉]|n〉, (18)

∣∣ �φC
ba

〉 =
√

N〈Xb|
N−1∑

i

�ri |�a〉, (19)

Can(t) =
∑
a′n′

Cana′n′(t,t0)Ca′n′(t0), (20)

Ca′n′(t0) = 〈n′|〈�a′ |�(�r,�q,t0)〉, (21)

Cana′n′(t,t0)

= eiEN(t−t0)/h̄eiεn′ t0/h̄e−iεnt/h̄〈n|〈�a|Û0(t,t0)|�a′ 〉|n′〉,
(22)

Db′m′bm(t,t1)

= eiEI(t−t1)/h̄eiεmt1/h̄e−iεm′ t/h̄〈m′|〈Xb′ |ÛI(t,t1)|Xb〉|m〉,
(23)

φd (�k,t,t1)

= Ip

h̄
(t − t1) + 1

2mh̄

∫ t

t1

dt ′(h̄�k − e �A(t1) + e �A(t ′))2, (24)

Ip = EI − EN. (25)

In Eq. (18), �Rbman(�k) is the dipole matrix element for
a bound to continuum vibronic transition. The first term in
Eq. (18) (〈�k|�r|φD

ba〉) arises due to the direct interaction between
laser field and the active electron. The second contribution
(〈�k| �φC

ba〉) is due to exchange-mediated interaction of the
laser field with the inactive core electrons [108–110]. It is
described by the three-component “cradle” vector orbital of
Eq. (19) (after Newton’s cradle, where a force acting on
one ball in a multiball pendulum causes a different ball to
swing [106]). Coefficients Can(t) describe the vibronic wave
packet on the neutral surface at time t . Coefficients Cana′n′(t,t0)
and Db′m′bm(t,t1) are respectively the matrix elements of the
neutral and ionic propagators Û0(t,t0) and ÛI(t,t1), where εn
is the energy of harmonic vibrational state |n〉. The explicit
form of the arbitrary-order Taylor expansion of these matrix
elements was given in Ref. [90] and need not be repeated
here. Equivalently, these matrix elements can also be obtained
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with MCTDH time propagation [91–95,97]. The phase factors
containing εn in Eqs. (22) and (23) arise to compensate for
the presence of the vibrational phase factor in the definition
of the wave-function ansatz in Ref. [90] [cf. Eq. (2) of
Ref. [90]]. In Eqs. (22) and (23), we have extracted the rapidly
oscillating overall phase of the matrix elements, using EN

and EI as the characteristic energy of the neutral and cationic
manifolds, respectively. Finally, φd [Eq. (24)] is the rapidly
varying part of the HHG dipole phase accumulated from t1
to t . The first term is due to the bound-state dynamics in the
cation, with Ip being the characteristic ionization potential;
the second contribution is the Volkov phase of the continuum
electron.

Applying the usual stationary-phase approximation
[102,103] for the �k integral in Eq. (17), we obtain

�d(t) =
∫

t0

dt1
∑
a′′n′′

∑
b′m′

∑
bm

∑
a′′′n′′′

1

h̄

(
i2πm

h̄(t − t1)

)3/2

×C∗
a′′n′′(t) �R∗

b′m′a′′n′′

(
�ks − e

h̄
�A(t1) + e

h̄
�A(t)

)

×Db′m′bm(t,t1) �F(t1) · �Rbma′′′n′′′ (�ks)Ca′′′n′′′(t1)

× e−iφd (�ks,t,t1) + c.c., (26)

�ks(t,t1) = − e

h̄(t − t1)

∫ t

t1

�A(t ′)dt ′ + e

h̄
�A(t1), (27)

where �ks is the stationary electron momentum at the time of
ionization t1.

Direct application of the stationary-phase approximation
to the dt1 integral in Eq. (26) leads to a generally complex
stationary ionization time ts, causing difficulties when the
matrix elements of Eq. (18) are only known numerically, on
the the real axis. An alternative, real treatment is based on an
observation that for all but the smallest 	t = t − t1 values,
the phase φd [Eq. (24)] is dominated by the Volkov phase
[98,102,103]. If the term containing the Ip can be neglected and
the field is linearly polarized, the stationary ionization time ts is
then determined by the condition �ks(t,ts) = 0. Small, nonzero
Ip values can then be accommodated using a Taylor expansion
around the �ks = 0 point [98]. For elliptically polarized fields,
�ks = 0 can not satisfy Eq. (27), as a small transverse initial
momentum is required to bring the stationary trajectory back
to the origin. The general condition determining the stationary
ionization time then becomes

�ks · ∂ �A(t)

∂ts
≡ −�ks · �F(ts) = 0. (28)

Equation (28) together with Eq. (27) define the real ionization
time ts.

An additional complication arises when the vibronic wave
function is even with respect to the origin and the laser field
is linearly polarized. Then, the matrix element �Rbma′′′n′′′ (�ks) in
Eq. (26) vanishes at �ks = 0, and the next order in the power
series determines the overall integral over dt1. Expanding the
ionization dipole through the first order around �ks and assum-
ing that the remaining matrix elements in Eq. (26) vary slowly

with �ks, we obtain (also see Appendixes A and B)

�d(t) =
∑

ts

∑
a′′n′′

∑
b′m′

∑
bm

∑
a′′′n′′′

(
i2πm

h̄(t − ts)

)3/2

C∗
a′′n′′(t)

× �R∗
b′m′a′′n′′

(
�ks − e

h̄
�A(ts) + e

h̄
�A(t)

)
Db′m′bm(t,ts)

×ϒbma′′′n′′′ (�ks,ts)Ca′′′n′′′ (ts)e
−iφd (�ks,t,ts) + c.c., (29)

ϒbma′′′n′′′ = �F(ts) · �Rbma′′′n′′′ (�ks)2π

(
2m

e2h̄2 �F 2(ts)

)1/3

Ai(ζ )

− 2iπ
∂

∂ �ks

[ �F(ts) · �Rbma′′′n′′′ (�ks)] ·
(

h̄�ks

t−ts
− e �F(ts)

)

×
(

2m

e2h̄2 �F 2(ts)

)2/3

Ai′(ζ ), (30)

ζ =
(

2m

e2h̄2 �F 2(ts)

)1/3(
Ebm − Ea′′′n′′′ + h̄2�k2

s

2m

)
, (31)

Ebm = 〈m|〈Xb|ĤI|Xb〉|m〉, (32)

Ea′′′n′′ = 〈n′′′|〈�a′′′ |Ĥ0|�a′′′ 〉|n′′′〉, (33)

where Ea′′′n′′ and Ebm are respectively energies of the neutral
and cationic vibronic basis functions. In Eq. (30) we neglected
the explicit time dependence of �F , which is in the same order
as other terms omitted in deriving Eq. 30 (see Appendix A). We
have also neglected the �ks dependence of the recombination
matrix elements �R∗

b′m′a′′n′′ . If necessary (for example, in the
vicinity of a Cooper minimum), this dependence can be
reintroduced in a similar manner.

Equation (29) is our final working equation. A closely
related special-case result was previously obtained by Chirilă
and Lein [65], and by Madsen et al. [86], which however did
not consider the possibility of state crossings and nonadiabatic
vibronic coupling. The special-case treatment of SF6 by
Walters et al. [83] is similar in spirit, and in principle includes
all effects considered here. Another closely related result
by Faisal [84] includes rotational motion (neglected here),
but restricts vibrational dynamics to a single surface. In
contrast, the treatment of Ref. [88], while superficially similar,
completely neglects all subcycle effects arising due to the
motion on the intermediate cationic surfaces. These effects
are also completely neglected by Ref. [87], which however
treats the vibronic dynamics in the neutral manifold. Finally,
treatments of Patchkovskii and Schuurman [90], Varandas
et al. [91–95], and Arnold et al. [97] fully treat cationic
vibronic dynamics, but neglect neutral dynamics and their
coupling to the HHG process.

III. COMPUTATIONAL DETAILS

A. Electronic structure calculations

All electronic structure calculations used a correlation-
consistent, valence triple-ζ basis set, augmented with diffuse
functions (“aug-cc-pVTZ” [111,112]). Calculations of the
neutral CH4 geometry and vibrational Hessian used second-
order Møller-Plesset (MP2) correlation treatment, with the 1s
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FIG. 1. MR-CIS Dyson orbitals for the three degenerate compo-
nents of the lowest (2F2) ionization channel in CH4. The orbitals are
shown at the high-symmetry Td point. Isosurface levels are 0.02a

−3/2
0 .

electrons on the carbon atom left uncorrelated. Optimized C-H
bond length (r0 = 1.110 Å) and unscaled harmonic vibrational
frequencies (ν1 . . . ν4 = 3069, 1589, 3204, 1356 cm−1) are in
a good agreement with the experimental equilibrium geometry
and fundamental frequencies (re = 1.094 Å, ν1 . . . ν4 = 2916,
1534, 3019, 1306 cm−1 [113]).

The equilibrium neutral geometry corresponds to a
symmetry-required triple degeneracy point of the 2F2 elec-
tronic ground state of the methane cation [114]. The electronic
structure in the vicinity of this degeneracy point was explored
by displacing all pairs of Cartesian coordinates by ±0.02 Å,
for the total of 450 unique distorted structures. The reference
geometry was taken in the standard setting of the Td group, with
the C2 axes along the main Cartesian directions (see Fig. 1).
Symmetry was used neither to reduce the number of the dis-
placed geometries nor in the electronic structure calculations
at these geometries.

Electronic wave functions of the three lowest cation
states correlating to the 2F2 state were calculated using
multireference configuration interaction with single exci-
tations treatment (MR-CIS). All configurations within the
minimal complete active space with seven electrons in four
frontier orbitals [CAS(7,4)] were included in the reference
set. Single-particle orbitals were optimized in a CAS(7,4)
self-consistent field (CASSCF) calculation, with the energies
of the three cation states correlating to 2F2 weighted equally.
The neutral wave functions were determined within the CIS
space, using the lowest closed-shell determinant constructed
from the cation-optimized orbitals as the reference. The
MR-CIS vertical ionization potential (MR-CIS: 13.14 eV)
slightly underestimates the experimental value (experiment:
13.60 eV [115,116]). Including double excitations in the
CI expansion (MR-CISD; Langhoff-Davidson +Q correction
[117] not included) leads to an overestimation of the vertical
IP by a similar amount (MR-CISD: 13.97 eV). Given the large
number of the distorted geometries, further increase in the
CI size is not practical. It is in principle possible to adjust
the calculated vertical IP to match the experimental value.
However, the experimental vertical ionization potential is
somewhat uncertain, with a very, very broad, complex peak in
the 13.2–14.0-eV range [116,118]. Because all qualitative fea-
tures of the energy surfaces are already adequately described
at the MR-CIS level, all subsequent calculations use MR-CIS
wave functions and energies. Due to the underestimation of
the vertical IP, we expect ionization rates [Eq. (30)] to be
somewhat overestimated.

B. Diabatization procedure

Evaluation of matrix elements entering Eq. (29) requires
that both the potential energy surfaces and the wave functions
are smooth and continuous in the vicinity of the expansion
point. It is therefore necessary to diabatize the MR-CIS states.
Construction of quasidiabatic states is a long-standing and still
active area of research (see Ref. [63] for an overview), with
many competing prescriptions available in the literature. An
appealing, generally applicable approach for constructing a
local quasidiabatic surfaces involves fitting adiabatic energy
gradients and derivative couplings at selected points in
the nuclear coordinate space [119–121]. Unfortunately, this
technique does not offer an easy access to the transformed
quasidiabatic wave functions, which are needed for evaluating
the somewhat nonstandard matrix elements ϒ and �R [Eqs. (18)
and (30)]. Here, we retain the quadratic vibronic Hamiltonian
form of Ref. [119], but revert to the older maximum-overlap
approach [122–124] to directly determine the diabatic wave
functions:

�dia
ja =

∑
i

Ujia�
ad
ia , (34)

where �dia
ja is the j th quasidiabatic state at geometry a, �ad

ia

is the ith adiabatic state at the same geometry. The unitary
transformation Ujia connects the two wave-function spaces.
At each displaced geometry (a), the optimal matrix Ua is
determined [122–127] by the overlap matrix Sa between
the adiabatic wave functions at the displaced geometry and
reference wave functions �ref

k (see Fig. 1):

Sika = 〈
�ad

ia

∣∣�ref
k

〉
, (35)

U∗
a = (S†

aSa)−1/2S†
a. (36)

For methane, reference wave functions �ref are taken at the
high-symmetry Td geometry, treated within the D2 subgroup.
The neutral manifold uses the 1A1 ground-state wave function,
while the cationic manifold is referenced to the lowest 2B1,
2B2, and 2B3 wave functions.

Once the diabatization transformation Ua is determined,
the quadratic vibronic Hamiltonian is obtained with a least-
squares fit to the diabatic Hamiltonian matrices at the displaced
geometries. Electronic matrix elements are calculated directly
from the transformed diabatic wave functions [Eq. (34)] as
described elsewhere [110,128] (also see Appendix C). For the
methane molecule in the vicinity of the equilibrium neutral
geometry, the resulting vibronic Hamiltonian coincides with
the result of [119], while the residual derivative couplings
are found to be numerically negligible. Direct nonlinear
minimization of the quadratic vibronic Hamiltonian fit with
respect to the diabatization parameters Ua leaves the result
unchanged, confirming that the transformation of Eq. (36)
represents a local optimum.

It should be noted that the quadratic vibronic Hamiltonian
of the 2F2 manifold of CH4

+ determined presently focuses on
the small region of configuration space in the vicinity of the
neutral equilibrium geometry. It is unbound from below, and
corresponds to a dissociative state. As a result, it is not capable
of describing long-time dynamics of the cation, and should not
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FIG. 2. Magnitude (a) and phase (b) of the dipole photoionization
matrix elements [Eq. (37)] for the D3 component of the 2F2 ionization
channel at the high-symmetry point (Fig. 1). The �k vector is taken
along the positive X Cartesian direction. The cradle contributions
[Eq. (19)] are significant beyond ≈150 eV. Omitting the cradle terms
leads to the “plane-wave” (PW) curve.

be compared globally to the more conventional, spectroscopic
surfaces, such as used in Refs. [91,92].

C. Dyson orbitals and dipole matrix elements

Dyson orbitals [Eq. (13)] corresponding to the ground-state
(2F2) ionization channel of the CH4 molecule are shown
in Fig. 1. All three components are strongly one-electron
allowed, with a Dyson orbital norm of 0.916. Visually, these
Dyson orbitals are indistinguishable from the triply degenerate
highest occupied molecular orbital of the neutral species.
The dominant “cradle” terms [Eq. (19), not shown] are
derived from the (s-like) 2a1 molecular orbital of the methane
molecule.

It is instructive to examine the electronic part of the
photoionization matrix elements:

�de = e
[〈�k|�r∣∣φD

ba

〉 + 〈�k∣∣ �φC
ba

〉]
(37)

[see Eq. (18)] a little more closely. Due to the high sym-
metry of the CH4 molecule, it is sufficient to constrain the
photoelectron observation direction to one of the Cartesian
axes (see Figs. 1 and 2). The dominant first term in the
matrix element is identical to the first Born approximation
in photoionization, known to be qualitatively inaccurate close
to the ionization threshold. Beyond 30 eV photon energy,
however, the calculated cross sections are in (fortuitously)
good agreement with experimental data [116,129–133] and
accurate calculations [134–136]. For example, Eq. (37) yields
a photoionization cross section of ≈17 Mbarn at 30 eV
photon energy (experiment: ≈14 Mbarn [136]), decreasing to
≈5 Mbarn at 60 eV (experiment: ≈2 Mbarn [136]), and to
≈1.2 Mbarn at 90 eV (experiment: ≈0.6 Mbarn [136]).

The cradle terms become important [108] beyond ≈150 eV
photon energy (see Fig. 2), leading to an ≈0.4-kbarn minimum

in the calculated cross sections at ≈196 eV. It is followed
by a maximum (≈7 kbarn) at 295 eV (again fortuitously)
close to where the cross section is expected to increase due
to the K-edge intensity borrowing [104]. Unfortunately, we
are not aware of reliable final-state resolved calculations or
measurements in methane for photon energies above 100 eV,
where ionization from the inner 2a1 and 1a1 shells dominates
the overall cross section [116]. It is therefore unclear whether
the photoionization matrix elements in Fig. 2 provide a
reasonable description of methane photoionization beyond
90 eV. Nonetheless, the minimum and the associated π phase
jump at 196 eV serve to illustrate an important point (see
below), which remains qualitatively valid even it occurs at a
different energy in the actual CH4 molecule than in our crude
calculations here.

D. Nuclear autocorrelation and MC-SFA-GWP
HHG calculations

Nuclear autocorrelation functions are a special case of the
vibronic matrix elements Db′m′bm(t,0) of Eq. (23), with b′ = b

and m′ = m. Both Db′m′bm and Ca′′′n′′′ matrix elements are
propagated in time numerically, using the fourth-order Runge-
Kutta integrator with a uniform time step [137]. Calculations
of the autocorrelation function used a time step of 0.02 au[t]
(≈0.48 as). Short-time autocorrelation functions calculated
presently numerically coincide with the analytical results [90],
for all times where the power-series expansion in Ref. [90]
converges.

Calculations of the time-dependent MC-SFA-GWP dipole
�d(t) [Eq. (29)] used a time step corresponding to 1/3 of
the Nyquist limit for the cutoff harmonics. The resulting
time step ranged from 0.386 au[t] (≈9.3 as) for the 800-nm,
300-TW cm−2 driving field, to 0.037 au[t] (≈0.89 as) for the
1.6-μm, 1-PW cm−2 driver. We did verify that all calculations
are converged with respect to the time step. The high-order-
harmonic spectrum was calculated from the Fourier transform
of the time-dependent dipole [102,103]. No window function
was applied.

The vibronic wave-function expansion was performed in
the basis of multidimensional harmonic oscillator functions
of the neutral species. Rotational and translational modes
were excluded. Calculations of the autocorrelation functions
allowed up to 12 quanta in any of the remaining nine normal
modes. This choice is fully converged with respect to the
basis set up to at least 4.5 fs evolution time, but is too
computationally expensive for MC-SFA-GWP calculations,
where the vibronic matrix elements need to be recalculated for
each trajectory. Instead, MC-SFA-GWP calculations limited
the vibronic basis to at most four quanta in any of the
vibrational modes. This choice changes the autocorrelation
function by less than 0.2% at 1.7 fs delay (800-nm cutoff
trajectory), increasing to 3% at 2.6 fs (1200-nm cutoff) and
25% at 3.4 fs (1600-nm cutoff). Our MC-SFA-GWP results
are therefore sufficiently converged at 800 and 1200 nm, but
are only qualitative for the high-energy part of the spectrum at
1800 nm (beyond 160/500 eV at 300/1000 TW cm−2).

All MC-SFA-GWP calculations were performed for laser
electric field polarized along the molecular X axis. Due to the
high symmetry of the CH4 molecule, we expect orientational
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FIG. 3. Nuclear autocorrelation function in methane cation.
Initial nuclear wave packet |c(0)〉 is the ground vibrational state of the
neutral species. Solid red line: CH4, this work. Solid blue line: CD4,
this work. Dotted orange line: CH4 using field-diabatized cationic
energy surface (Ref. [52]). Dotted purple line: CD4 from Ref. [52].
Panel (a) shows the squared absolute magnitude of the autocorrelation
function. Panel (b) gives the phase of the autocorrelation function.
Linear phase due to the zero-point energy has been subtracted. Dotted,
gray vertical lines indicate time delays for the cutoff trajectories for
800- and 1600-nm driving fields.

averaging to play only a minor role for this system. Only the
short trajectories were considered.

IV. RESULTS AND DISCUSSION

A. Free-cation dynamics and autocorrelation function

The simplest summary of the subcycle nuclear dynamics
is provided by the nuclear autocorrelation function, shown
in Fig. 3 for both CH4 and CD4 cations, using neutral
vibrational ground state as the initial wave function at time
zero. For comparison, we show autocorrelation functions for
the same species and initial conditions from Ref. [52]. At
very short times (up to ≈1.2 fs), all four autocorrelation
functions are Gaussian in time [please note the linear-log
scale of Fig. 3(a)], which is a generic feature of short-time
autocorrelation functions [52,138]. The agreement between
the data sets is remarkably good, considering the differences
in the theoretical treatment. In Ref. [52], the autocorrelation
functions are calculated on a single component of the 2F2

electronic surface, with the degeneracy lifted by applying

an intense (≈2.6 V Å
−1

) static electric field. Because the
components of the 2F2 state are coupled by the electric
field (MR-CIS transition dipole of ≈0.7 D), the surface

shape is also modified, allowing the single-surface dynamics
to mimic the more complex vibronic dynamics at early
times.

At the same time, the single-surface treatment does not
allow for the “orbiting” motion of the wave packet around
the conical intersection point, precluding the possibility of
revivals on a few-femtosecond time scale. Beyond ≈1.2 fs, a
single, field-diabatized surface no longer adequately represents
vibronic dynamics in this system. For CH4 (CD4), the
population of the initial surface reaches a minimum of 52%
(51%) at 1.5 fs (1.7 fs), then begins to increase again as a
fraction of the wave packet completes a half revolution around
the CI. Correspondingly, the autocorrelation function changes
sign [see Fig. 3(b)] and undergoes a half revival at 2.15 fs
(2.50 fs). For both CH4 and CD4, the nuclear autocorrelation
factor in HHG reaches 1.5% at the half revival—more than an
order of magnitude above the expected damping factor due to
the Gaussian decay [52]. A full wave packet revival appears as
a shoulder at the 0.5% level, at ≈3.6 fs (≈4.2 fs). Similar, non-
Gaussian intermediate-time decay and unexpected revivals
have been previously predicted in other nonadiabatic systems
[89,90,97].

The short-time autocorrelation functions in Fig. 3 are qual-
itatively consistent with the previously reported calculations
by Mondal and Varandas [91,92]. These authors find the first
half revival at ≈2.4 fs for CH4

+ (≈2.8 fs for CD4
+). The full

revivals are also found at times comparable to our results. At
the same time, the maximum of the CD4/CH4 autocorrelation
functions ratio calculated in Ref. [92] is much higher (≈6,
compared to ≈2.7 here). It is also reached at a later time
(≈1.85 fs, compared to ≈1.5 fs here). Both discrepancies are
well within the range of available experimental resolution, and
would be interesting to explore.

Furthermore, in contrast to Refs. [91,92], we cannot
attribute the revivals to the dynamics reaching the Jahn-Teller
minima on the cationic energy surface. Calculated expectation
values of normal coordinates on each electronic surface evolve
monotonically at least until 3.5 fs. The Cartesian displacements
in the center-of-mass coordinate system remain small (less
than 0.02 Å), with the structure remaining at the D2d symmetry,
indicating that the minimum is not reached at the times relevant
for the PACER experiments at mid-IR wavelengths.

It is therefore instructive to examine the origin of the
oscillations in the short-time autocorrelation function in a
little more detail. The square modulus of the autocorrelation
function measures the population of the initially populated
vibronic basis function (D1|gs〉 in Fig. 4). The strongest
vibrational coupling of |gs〉 on the same quasidiabatic
electronic surface is to a vibrational basis function with a
single quantum in the ν2 vibrational mode (|ν2〉: e symmetry,
1589 cm−1, H-C-H bending motion). The strongest coupling
to the other two quasidiabatic surfaces (D2 and D3) involve
single excitation of the ν4 (|ν4〉: t2, 1356 cm−1, H-C-H bend)
and ν3 (|ν3〉: t2, 3204 cm−1, C-H stretch) normal modes. All
of these couplings are of a similar magnitude. The number
of significant couplings increases rapidly with the vibrational
excitation level; once two or more vibrational quanta have
been excited, the probability of the wave packet returning to
the initial state D1|gs〉 becomes negligible.

053405-7



SERGUEI PATCHKOVSKII AND MICHAEL S. SCHUURMAN PHYSICAL REVIEW A 96, 053405 (2017)

10-3

10-2

10-1

1.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

P
op

ul
at

io
n

Time (fs)

D1 |gs>

D1 | 2>

D2/D3 | 4>

D2/D3 | 3>

FIG. 4. Transient population of dominant singly excited vibronic
basis functions in CH4

+. The initially prepared wave packet is
ground vibrational state of the neutral molecule, placed on the D1

diabatic surface (D1|gs〉, black squares). This vibronic basis function
is directly coupled to the singly excited ν2 mode on the same electronic
surface (D1|ν2〉, red diamonds), singly exited ν4 mode on the D2 and
D3 surfaces (D2/D3|ν4〉, purple triangles), and singly excited ν3 mode
on the same surfaces (D2/D3|ν3〉, green inverted triangles).

The short-time evolution of the population of the initially
populated and singly excited vibronic basis functions in CH4

+
is illustrated in Fig. 4. One can immediately see that the
populations of all five dominant singly excited functions
(D1|ν2〉, D2/D3|ν4〉, and D2/D3|ν3〉) oscillate in phase at
least up to 4.5 fs. The oscillations are out of phase with the
autocorrelation magnitude (D1|gs〉 population), indicating the
back-and-forth population transfer. This behavior is easy to
rationalize by considering a reduced-dimensionality model,
consisting of just the six essential states listed above. The
corresponding model Hamiltonian is

Hmod,1 =

⎛
⎜⎜⎜⎜⎜⎝

0 b1 b2 b2 b3 b3

b1 d1

b2 d2 0
b2 d2

b3 0 d3

b3 d3

⎞
⎟⎟⎟⎟⎟⎠, (38)

where all elements not in the first row or column, or on the main
diagonal, are zero. As long as all di ≈ d, this Hamiltonian is
equivalent to a two-level system:

Hmod,2 =
(

0 b0

b0 d

)
, (39)

b0 =
√

b2
1 + 2b2

2 + 2b2
3, (40)

where the transformed basis is

φ1 = D1|gs〉, (41)

φ2 = b−1
0 {b1D1|ν2〉 + b2D2|ν4〉 + b2D3|ν4〉

+ b3D2|ν3〉 + b3D3|ν3〉}. (42)

The φ2 basis function corresponds to a vibronic wave packet
component “orbiting” the conical intersection. In the nuclear
coordinate space, |φ2〉 forms a prolate spheroidal shell around
the conical intersection. The oscillatory behavior in the
autocorrelation function (i.e., the population of the |φ1〉 basis

function) is due to the interference between the two eigenstates
of Eq. (39), while the overall decay of the signal in this model
arises from the imaginary part of d [Im(d) < 0]. To the order
O(d2), the difference between the eigenvalues of Hmod,2 is

	Emod,2 ≈ 2b0. (43)

Thus, the oscillation frequency of the short-time autocorre-
lation function is determined by the strength of the coupling
between the initially prepared component of the wave packet
and its decaying part orbiting the conical intersection.

As can be clearly seen from Eq. (40), nonadiabatic vibronic
coupling between the electronic surfaces plays a key role
in the initial wave-packet decay. If vibronic coupling is
neglected, the initial decay is slowed down dramatically (data
not shown), as was seen before for the benzene cation [90]. The
resulting lower isotope effects are no longer compatible with
experimental data (see Sec. IV C below). A similar observation
was made in Ref. [86], which neglected the vibronic coupling.

Coordinate dependence of the tunneling-ionization matrix
elements [Eq. (30)] can lead to substantial reshaping of the
neutral vibrational wave packet upon ionization [139]. In
methane, ionization primarily populates ν4 (asymmetric bend)
and ν3 (asymmetric stretch) modes. Nuclear autocorrelation
functions for single-quantum excitation of these two modes in
CH4 and CD4 are shown in Fig. 5. These autocorrelations are
qualitatively similar to the case of the vibrational ground state
(Fig. 3). However, the first half revival occurs at an earlier time,
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FIG. 5. Nuclear autocorrelation function in vibrationally excited
methane cation. Initial nuclear wave function |c(0)〉 has a single
vibrational quantum in the asymmetric bend (ν4, 1356/1028 cm−1 in
CH4/CD4) or asymmetric stretch (ν3, 3204/2379 cm−1) vibrational
modes. Panels and the scale of the plots is the same as in Fig. 3; see
Fig. 3 caption for further details.
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and has a substantially higher magnitude (CH4: 2.9/2.5% at
1.93/1.98 fs for ν4/ν3; CD4: 2.8/2.7% at 2.23/2.25 fs for
ν4/ν3 respectively). The faster short-time dynamics of vibra-
tionally excited states has been noted before [52,65,67,85,94].
This property will be important for understanding the HHG
spectra at longer wavelengths (Sec. IV B below).

Overall, nonadiabatic nuclear autocorrelation factors sug-
gest that HHG emission in methane should persist at much
longer times than expected previously. Even at 4.3 fs, close to
the short-trajectory cutoff for a 2-μm IR driver, the autocorre-
lation factor remains above 0.2% (0.4% for CD4)—within the
possible measurement range. Furthermore, the nonadiabatic
dynamics around the CI can be expected to lead to a rich
PACER signal, including inverse isotope effects between 1.8
and 2.3 fs. A more detailed investigation of the HHG signal
therefore appears justified, and is attended to in Secs. IV B and
IV C below.

B. High-order-harmonic generation

For calculations of high-order-harmonic spectra, we con-
sider three driver wavelengths (800 nm, 1.2 μm, and 1.6 μm)
and two peak intensities (300 TW cm−2 and 1 PW cm−2). For
each combination of the wavelength, intensity, and isotopic
species, we perform four simulations, as follows.

FS: In this simulation, the nuclei are “frozen,” and are not
allowed to move between ionization and recollision. To this
end, the vibronic matrix elements of Eqs. (22) and (23) are
replaced by

Cfrozen
ana′n′(t,t0) = eiEN(t−t0)/h̄,

Dfrozen
b′m′bm(t,t1) = eiEI(t−t1)/h̄.

All other matrix elements and the initial nuclear wave packet,
represented by the Ca′n′(t0) coefficients in Eq. (20), remain
unchanged. As the result, this simulation can still exhibit
isotope effects due to the differences in the initial ground-state
wave packet widths combined with coordinate dependence of
the matrix elements.

AC: In this “autocorrelation” simulation, the electronic part
of the dipole is calculated exactly as in the frozen-nuclei
simulation FS. For each trajectory, the dipole is multiplied
by the magnitude of the nuclear autocorrelation function
(Sec. IV A). Thus, electronic continuum and vibronic dynam-
ics are assumed to be factorized and mutually independent.
This is the the approach typically taken for the analysis of
PACER spectra.

ND: In this “no-dipole” simulation, we use the full Eq. (29).
However, the effects of the laser field are neglected when eval-
uating vibronic matrix elements of Eqs. (22) and (23). Thus, vi-
bronic dynamics in the neutral species and the cation are taken
to be field free, and depend only on the initial composition of
the wave packet and the elapsed time. The laser field interacts
with the continuum part of the wave function at all times, but
with the rest of the molecule only at the moment of ionization,
through the ϒbma′′′n′′′ matrix element of Eq. (30). Electronic
and nuclear dynamics are otherwise fully correlated.

DS: Finally, the “dipole” simulation uses Eq. (29), with no
further simplifications to any of the matrix elements. The laser
field can cause (subcycle) vibrational excitation in the parent
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FIG. 6. MC-SFA-GWP high-order-harmonic spectrum of
methane for a single-sided recollision in 800-nm driving field. Only
short trajectories are included. The ionization potential (Ip) and the
harmonic cutoff (3.17Up + 1.3Ip) are indicated by vertical grey lines.
The labels are as follows (see text for details): Nuclear geometry
frozen, no nuclear factors included: FS (CD4: solid black line; CH4:
dotted black line). Nuclear geometry frozen, autocorrelation factor
included: AC (CD4: blue; CH4: red). MC-SFA-GWP, vibronic terms
due to laser coupling omitted: ND (CD4: purple; CH4: orange).
MC-SFA-GWP, all terms included: DS (CD4: teal; CH4: magenta).
Panel (a) 300 TW cm−2. The CD4 FS and CH4 FS (not shown)
curves are visually indistinguishable. (b) 1 PW cm−2.

neutral species, modify the nuclear wave packet through the
ionization matrix elements ϒbma′′′n′′′ , and cause vibronic tran-
sitions on the cationic surface. DS is our best-effort simulation.

Calculated normal and deuterated methane HHG spectra for
the 800-nm driving field are shown in Fig. 6. At the moderate,
300 TW cm−2 intensity of the driving field [panel (a)],
harmonic cutoff is found at ≈74 eV photon energy (harmonic
47). For these field parameters, the frozen-nuclei spectra of
the two isotopic species are indistinguishable. Close to the
cutoff, nuclear motion leads to HHG suppression by a factor of
≈75× (CD4) or 100× (CH4). All three approaches we consider
for treating the nuclear motion yield essentially the same
results, indicating that the vibronic and recollision dynamics
are largely uncorrelated, and the subcycle vibronic dynamics
is not affected by the laser field.

The situation changes when the intensity is increased to
1 PW cm−2 [Fig. 6(b)]. Now, the HHG cutoff extends to
≈206 eV (H133), past the minimum in the recombination
cross section (see Fig. 2). In the vicinity of the minimum, the
finite width of the initial nuclear wave packet now leads to
isotope dependence even in the absence of subcycle nuclear
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motion: HHG emission from CD4 (CD4 FS, solid black
line) in the vicinity of the minimum is ≈55× stronger than
for CH4 (CH4 FS, dotted black line). At a first glance, this
result appears counterintuitive: the broader ground-state
vibrational wave packet in CH4 is expected to sample a
wider range of nuclear configuration, and thus better “fill
in” the 196-eV structural minimum in the recombination
matrix element. However, in the vicinity of the CH4 harmonic
minimum (≈194 eV), the phase of the recombination matrix
element varies substantially over the characteristic extent
of the ground-state nuclear wave function. The destructive
interference then leads to a much stronger suppression in
CH4 FS harmonic emission than might have been expected
from the matrix elements at the equilibrium geometry alone.
The narrower distribution of the nuclear positions in the
heavier CD4 reduces the extent of the destructive interference,
leading to increased HHG intensity near the minimum.

The qualitative features of the frozen-nuclei high-order-
harmonic spectra remain essentially unchanged at longer
wavelengths: the two isotopic species are indistinguishable
away from the structural minimum in the recombination matrix
elements. In the vicinity of the structural minimum, CD4

shows much smaller suppression compared to the lighter
isotopolog. As the result, we will neither show nor discuss
the frozen-nuclei HHG spectra for longer wavelengths.

Returning to the 800-nm, 1-PW cm−2 case [Fig. 6(b)], the
results obtained using different approaches for the treatment of
subcycle nuclear motion remain similar within the harmonic
plateau (below ≈150 eV), but start to differ closer to the struc-
tural minimum. As expected, the factorized AC approach faith-
fully reproduces the shape of the frozen-nuclei spectra [CH4:
solid red line; CD4: solid blue line, Fig. 6(b)], and yields a
pronounced minimum around 194 eV. However, the minimum
is completely filled in when using a more elaborate treatment
(ND or DS), reflecting the spreading of the nuclear wave packet
between ionization and recombination. The magnitude of the
isotope effects is also much reduced, and is possibly inverted
(see Sec. IV C below). Furthermore, laser-field modification
of vibronic dynamics may begin to play a role.

Calculated HHG spectra for single-sided recollision at
1.2 μm are collected in Fig. 7. At 300 TW cm−2, the cutoff is
found at ≈145 eV (H140), well below the structural minimum.
On the low-energy side of the plateau (below ≈80 eV), the
three approaches to the treatment of nuclear motion (AC, ND,
and DS) yield very similar results. This is not unexpected: this
low-energy part of the spectrum corresponds to recollision time
delays below 1.7 fs, which were explored by the 800-nm results
above. At longer time delays, correlated vibronic calculations
(both ND and DS) now predict significantly higher HHG
intensity than the direct-product AC approximation (but still
two orders of magnitude lower than the frozen-nuclei results).
The enhancement is due to the coordinate dependence of
the strong-field ionization [Eq. (30)]. Close to the peak of
the laser electric field, it leads to a substantial population of
the nuclear basis functions excited along the ν3 (asymmetric
stretch) and ν4 (asymmetric bend) normal modes. For CH4

and linear polarization along X (Fig. 1), the initial amplitudes
of the singly excited ν4 (ν3) on the dominant D3 electronic
surface reach 14% (33%) of the vertical-ionization amplitude
at 300 TW cm−2, increasing to 14% (36%) at 1 PW cm−2.
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FIG. 7. MC-SFA-GWP high-order-harmonic spectrum of
methane in 1.2-μm driving field. (a) 300 TW cm−2. (b) 1 PW cm−2.
Also see Fig. 6 caption. The HHG spectra for the frozen nuclear
configuration are off the scale, and are not shown.

Ionization-induced nuclear wave-packet reshaping is smaller,
but still substantial for CD4: ν4 (ν3) relative amplitudes of
9% (19%) at 300 TW cm−2, increasing to 10% (21%) at 1
PW cm−2. The initially excited component of the vibronic
wave packet reaches the half revival faster (after ≈2 fs delay),
while the higher magnitude of the revival (Fig. 5) compensates
for the reduced population relative to the vertical ionization.
In the heavier CD4, the ν4/ν3 half revivals occur later (after
≈2.2 fs), so that the ND and AC spectra remain similar until
much closer to the cutoff. Finally, the ND (no laser coupling
in the vibronic dynamics) and DS (full laser coupling) spectra
begin to diverge close to the cutoff, indicating that field-
induced bound-state dynamics becomes important beyond 2-fs
delays.

At the higher 1 PW cm−2 intensity [Fig. 7(b)], the
harmonics cutoff now extends to 443 eV (H429). The structural
minimum in the recombination matrix elements is now
well within the plateau region, inducing a false cutoff near
200 eV. The direct product form (AC) remains a reasonable
approximation early within the plateau (up to ≈1.5 fs; 160 eV
emission energy). At higher emission energies, both the
correlations between the vibronic and continuum dynamics
and the field-induced vibronic transitions become important.
The position of the structural minimum is shifted to higher
photon energies (225–250 eV, depending on the species and the
details of the treatment). A similar shift of an HHG feature was
experimentally observed [43] in PACER experiments on H2,
where however coordinate dependence of the recombination
matrix elements moves the minimum to lower energies.
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FIG. 8. MC-SFA-GWP high-order-harmonic spectrum of
methane in 1.6-μm driving field. (a) 300 TW cm−2. (b) 1 PW cm−2.
Also see Fig. 6 caption. The HHG spectra for the frozen nuclear
configuration are off the scale, and are not shown. Parts of the ND
and DS spectra between the dotted vertical grey line and the cutoff
may show increased computational errors; see Sec. III D.

Vibronic dynamics “fills in” the structural minimum (CD4

ND: purple line with triangles; CH4 ND: orange line with
inverted triangles). At the same time, field-induced vibronic
transitions sharpen the minimum again (CD4 DS: teal line with
crosses; CH4 DS: pink line with plus signs). The isotope effects
in the high-energy part of the plateau thus reflect a number of
dynamics (see Sec. IV C below).

Our final example uses a 1.6-μm driver (Fig. 8). Already
at 300 TW cm−2 [Fig. 8(a)] the cutoff extends beyond the
structural minimum, to 244 eV (H315). The qualitative fea-
tures of the calculated HHG spectra are similar to the 1.2-μm,
1-PW cm−2 case above: the simplified product representation
(AC) is adequate at low energies (short times); correlated
vibronic dynamics and laser-induced vibronic coupling are
increasingly important at higher energies, and especially in
the vicinity of the structural minimum. At the 1-PW cm−2 in-
tensity, the still higher-order-harmonic cutoff (775 eV, H1000),
leads to a particularly clean demonstration of a transition from
largely pure, field-free vibronic dynamics to fully correlated
dynamics under strong-field control [Fig. 8(b)]. On the left side
of the plateau (before 170 eV/1.6 fs), the spectra are grouped
by the isotopic species, with all three treatments (AC, ND, and
DS) yielding very similar results for either species.

On the right-hand side of the plateau (beyond
450 eV/2.3 fs), the HHG spectra are instead grouped by
the treatment of bound-continuum correlations and laser field

effects in vibronic dynamics. For example, at 600 eV, the
product form (CD4 AC, blue line with squares) underestimates
the HHG intensity by a factor of ≈3× compared the field-free
correlated treatment of the vibronic dynamics (CD4 ND, purple
line with triangles). At the same time, the full treatment
including field-induced vibronic transitions (CD4 DS, teal line
with crosses) predicts HHG yield at this energy ≈2.3× below
the AC treatment, and ≈8× below the field-free dynamics
prediction. For nuclear dynamics simulations neglecting field-
induced vibronic transitions, isotopic effects in this region do
not exceed 1.5×. However, the full treatment (CH4 DS, purple
line with plus signs) predicts a very strong suppression of
harmonic emission beyond 500 eV, which is likely to appear as
a false cutoff in experiment. Clearly, neglecting field-induced
bound-state transitions in the cation is not a viable treatment
in the high-intensity and multicycle limit [65,71].

Finally, in the transition region around the structural
minimum, both the position and the depth of the structural
minimum are highly sensitive to the isotopic species, treatment
of nonadiabatic dynamics, and laser-induced bound-state
dynamics. Again similar to the 1.2-μm, 1-PW cm−2 case,
correlated vibronic dynamics shifts the apparent position
of the structural minimum to higher energies and reduces
its contrast, while inclusion of the laser-induced vibronic
dynamics partially reverses the shift. In CH4, the minimum
is found at 198 eV (AC), 236 eV (ND), and 219 eV (DS). In
CD4, the minima are shifted slightly to higher photon energies:
200 eV (AC), 239 eV (ND), and 220 eV (DS).

C. Isotope effects

Because PACER experiments are routinely interpreted in
terms of ionization-recollision time delays, it is instructive to
examine the isotopic ratios of the high-order-harmonic spectra
in Figs. 6–8 in a similar way. In the absence of continuum
resonances, there exists a one-to-one mapping between the
short-trajectory HHG spectrum and the ionization-recollision
time delay [9]. This relationship breaks down close to sharp
features in photorecombination matrix elements (see Sec. IV B
and Refs. [102,103,105,140]). Although the emission time in
these cases can still be recovered through the time-frequency
analysis [141], there appears to be no unambiguous way of
reconstructing the ionization-recollision time delay close to
resonances. We therefore choose the classical “simple man’s”
mapping [9] (SMM) for the ionization-recombination time
delay, with the twin caveats: (a) this mapping is known to be
inaccurate for short trajectories, especially for the 800-nm
driver [7,141]; and (b) the mapping should be treated as
undefined close to structural minima in the harmonic spectrum.
The advantage of the SMM is that the range of possible
time delays depends only on the wavelength of the driving
laser, so that different intensities can be compared directly.
The underlying assumption of the PACER method is that
the isotope effects represented in this form are intensity and
wavelength independent.

Calculated isotope effects for the 800-nm driving field
are shown in Fig. 9. The available experimental data [41]
(black error bars) were obtained at the estimated intensity of
200 TW cm−2, and can be most directly compared to the
numerical results of Fig. 9(a), calculated at a somewhat higher
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FIG. 9. Isotope effects in methane for the 800-nm driving
field. Vertical axis: The ratio of the calculated HHG yields for
CD4 and CH4 (Fig. 6). Horizontal axis: Time delay between
ionization and recollision events, calculated from the harmonic
energy using classical simple man’s model (see text). AC (blue line
with diamonds): direct product of the autocorrelation function and
frozen-nuclei electron dynamics; ND (green line with triangles):
correlated treatment, field-induced bound-state dynamics neglected;
DS (red line with squares): the full treatment, including field-induced
vibronic transitions. Dashed grey line gives the ratio of ground-state
autocorrelation factors (Fig. 3). Dash-dotted and dotted grey lines
in (a) represent the ratio of autocorrelation factors for ν3 and ν4

vibrationally excited initial wave packets (Fig. 5), respectively. Panels
(a) and (b) correspond to laser intensity of 300 and 1000 TW cm−2,
respectively. Experimental points in (a) are from Ref. [41], measured
at the estimated intensity of 200 TW cm−2.

intensity of 300 TW cm−2. As expected from the similarity of
the calculated spectra for the three approximations we consider
here [Fig. 6(a)], the calculated PACER ratios are nearly
identical. The simple ratio of the autocorrelation functions
(Fig. 3) yields nearly identical results, except very close to
the harmonic cutoff (t > 1.5 fs). The agreement with the
experiment is satisfactory, although the experimental isotope
ratios are consistently slightly higher than the calculated
values. A possible reason for the discrepancy is the vibrational
excitation of the neutral molecule by the raising edge of the
8-fs pulse used in experiment [41], which is not included in the
present single-cycle simulation. As can be seen from Fig. 5,
population of the IR-active ν3 and ν4 vibrational modes in
the initial wave packet is expected to increase isotope effects
for the delays below 1.3 fs [dash-dotted and dotted lines in
Fig. 9(a)].

Both the intrinsic correlations and laser-induced vibronic
dynamics become important for the isotope effects at the
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FIG. 10. Isotope effects in methane for 1.2-μm driving field, from
HHG data in Fig. 7. Also see Fig. 9 caption.

higher, 1 PW cm−2 intensity [Fig. 9(b)]. Compared to the
uncoupled approximation (AC, blue line with diamonds),
correlations between the continuum and vibronic dynamics
in the cation (ND, green line with triangles) substantially
reduce the calculated isotope effects. Laser-induced vibronic
dynamics (DS, red line with squares) partially counteracts
this effect. Our best-effort calculation (DS) suggests that
the observed isotope effects at this intensity should start
decreasing beyond 1.2-fs delays, with inverse isotope effects
predicted beyond 1.45 fs. We emphasize that the inverse
isotope effect in this case is due to the structural minimum
at 196 eV in our photoionization matrix elements (Fig. 2)
and the associated breakdown of the time-frequency mapping.
An inverse isotope effect of a similar origin was previously
predicted for the D2/H2 pair [65,67]. A change in the position
of the photoionization resonance will also change the apparent
time delay where the inverse isotope effect is predicted.

The simulated PACER results for the longer-wavelength,
1.2-μm driver and moderate 300-TW cm−2 intensity are shown
in Fig. 10(a). Superficially, this PACER trace is remarkably
similar to the DS (correlated and laser-coupled) result at
800 nm and 1 PW cm−2 [Fig. 9(b)]: the isotope effect first
increases, then changes sense at longer delay times. However,
the physics behind the trace is entirely different. At 1.2 μm,
the signal reflects the field-free vibronic dynamics in the
transient cation, with neither vibronic-continuum correlations
nor laser-driven vibronic dynamics qualitatively affecting the
result. Thus, neglecting the laser coupling in the cation (ND)
and neglecting both the laser coupling and vibronic-continuum
correlations (AC) yield results very similar to the full simula-
tion. All three simulated PACER traces are nearly on top of the
simple ratio of the autocorrelation functions (dashed line). At
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FIG. 11. Isotope effects in methane for 1.6-μm driving field, from
HHG data in Fig. 8. Time delays beyond the grey vertical dotted line
at 2.6 fs may suffer from increased numerical errors; see Sec. III D
of the text. Also see Fig. 9 caption.

the 1.2 μm wavelength, the laser cycle is long enough to allow
vibronic wave packet in the cation to reach the half revival at
the conical-intersection point (see Fig. 3 and Sec. IV A). The
PACER trace containing a reversal of the isotope effect thus
represents a true signature of the CI dynamics.

The situation becomes more complex at the higher
1 PW cm−2 intensity [Fig. 10(b)]. Now, the harmonic spectrum
extends far enough to access the structural minimum in the re-
combination matrix elements. As a result, the apparent isotope
effects at time delays corresponding to the structural minimum
(AC: ≈1.63 fs; ND: ≈1.78 fs; DS: ≈1.73 fs) become very
large, and sensitive to the details of the treatment (AC: 14×;
ND: 3.9×; DS: 175×). At time delays unaffected by the struc-
tural minimum (t < 1.55 fs and t > 1.85 fs), the calculated
PACER signal is qualitatively similar to the 300-TW cm−2

results. As was already seen above for the 800-nm case, the
influence of continuum-vibronic correlations and laser-driven
vibronic dynamics increases at the higher intensity.

Finally, simulated PACER traces at 1.6 μm wavelength
are shown in Fig. 11. Already at the moderate 300-TW cm−2

intensity, harmonic cutoff reaches beyond the structural
minimum. The corresponding PACER trace [Fig. 11(a)]
is representative of the intrinsic vibronic dynamics for the
delays below ≈2.5 fs. At longer times, the structural-minimum
feature dominates. Further increasing the intensity [Fig. 11(b)]
leads to a very complex spectrum, which loses nearly all
information on the intrinsic vibronic dynamics beyond
≈1.7 fs. If the intrinsic, field-free dynamics of the cation
is of interest, extending the wavelength to 1.6 μm therefore
appears to offer little advantage.

V. CONCLUSIONS AND OUTLOOK

In this work, we introduced MC-SFA-GWP—a version
of the molecular strong-field approximation which treats all
electronic and nuclear degrees of freedom, including their
correlations, quantum mechanically. The technique allows re-
alistic simulations of the nuclear motion effects on high-order-
harmonic emission in polyatomic molecules without invoking
reduced-dimensionality models for the nuclear motion or the
electronic structure.

We use the technique to model isotope effects in methane.
The intermediate 2F2 electronic state of the CH4

+ cation tran-
siently accessed by the HHG process possesses a symmetry-
required triple-state conical intersection at the Franck-Condon
point. Simulations of the field-free vibronic dynamics of the
2F2 state in CH4

+ indicates that a fraction of the initially
prepared wave packet undergoes a half revival, accompanied
by a sign change of the vibronic wave function, within 2.2 fs.
This time scale is well within the laser-cycle duration of near-
IR light, and is accessible with HHG spectroscopy. The revival
is associated with population of an intermediate vibronic wave
packet, composed of the singly excited ν4 (t2) and ν2 (e)
vibrational modes coupled to the degenerate components of the
2F2 electronic surface. In the space of nuclear coordinates, this
wave packet forms a prolate spheroidal shell around the conical
intersection. The revival times are determined predominantly
by the strength of the vibronic coupling near the CI, thus
permitting its direct experimental measurement.

A well-understood difficulty in PACER and other HHG
spectroscopies of molecules is the strong (Gaussian in time)
suppression of the HHG emission due to the loss of nuclear
wave-function overlap. We demonstrate that beyond 1.5 fs,
nuclear motion in methane no longer causes a Gaussian
suppression of the HHG signal, with the expected nuclear
factor persisting at ≈1% level up to 3.5 fs—high enough to
allow experimental detection. This unexpected persistence of
the fraction of the HHG signal appears to be universal, and has
been predicted for several other cations [89,97].

We analyze and identify a number of physical mechanisms
which contribute to the isotopic PACER signal in methane.
At intensities below 300 TW cm−2 and wavelengths below
1.2 μm, the autocorrelation contribution is dominant. This
contribution derives from the intrinsic vibronic dynamics
around the conical intersection. It manifests as an inverse
isotope effect at ≈2.2 fs ionization-recollision delay, and is
wavelength and intensity independent. This effect has been
predicted previously [91,92]. An experimental observation was
claimed very recently [49].

The autocorrelation term is modified by a number of
wavelength- and/or intensity-dependent contributions, includ-
ing coordinate dependence of strong-field ionization ampli-
tudes [64]; laser-driven vibronic dynamics in the neural and
the transient cation [71]; the coordinate dependence of the
photorecombination amplitudes [43,65,67]. For wavelengths
beyond ≈1.6 μm or intensities above 300 TW cm−2, the latter
contributions may dominate the PACER spectrum (see also
Refs. [65,67]), even for a single-cycle driving pulse.

Furthermore, we demonstrate that the PACER concept
breaks down for harmonic emission close to resonances
(constructive or destructive) in the recombination matrix
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elements. At these energies, no simple relationship exists
between the harmonic photon energy and the emission time.
The isotopic ratio is then no longer representative of the
intrinsic vibronic dynamics in the cation. For any given
combination of the wavelength and intensity of the driving
field, the PACER spectrogram resulting from a resonance
may be indistinguishable from the signal due to the intrinsic
vibronic dynamics. It is therefore essential to perform PACER
experiments at a number of wavelengths and/or intensities.
Features which appear at a fixed, or nearly fixed, emission
energy are likely to originate from a resonance in the
recombination matrix elements.

Although the present analysis focuses on one of the simplest
polyatomic molecules, methane, both conical intersections
and resonant features in photorecombination matrix elements
are ubiquitous in polyatomic molecules. High-order-harmonic
spectroscopy thus provides a tool for exploring both, in the
regime not easily accessible with other techniques.

The effects discussed presently are of the subcycle nature,
and are already present for a single-cycle driving pulse. For
longer pulses, additional physical mechanisms will come
into play [64,68,71,77,79]. A careful examination of these
multicycle effects and their interaction with the intrinsic
subcycle dynamics is one of the possible future applications
of the MC-SFA-GWP approach.
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APPENDIX A: EVALUATION OF THE dt1
INTEGRAL IN EQ. (26)

We need to evaluate an integral in the form

I = ∫ t

t0
dt1f (�ks(t1))e−iφd (�ks(t1),t,t1), (A1)

where �ks is in turn a function of t1 [Eq. (27)] and φd is defined
by Eq. (24). We assume that f (�ks) depends at most linearly
on �ks. Expanding φd through the third [98] order in t1 around
ts, changing integration variable to τ = t1 − ts, and extending
the integration limits to infinity, we obtain

I ≈
∫ ∞

−∞
dτ

[
f + τ

∂f

∂ �ks

· ∂ �ks

∂ts
+ τ

∂f

∂ts

]

× e−iφd−i(∂φd/∂ts)τ−(i/2)(∂2φd/∂t2
s )τ 2−(i/6)(∂3φd/∂t3

s )τ 3
, (A2)

∂3φd

∂t3
s

= −3h̄

m

�k2
s

(t − ts)2
+ 3e

m

1

t − ts
�ks · �F

+ e

m
�ks · ∂

∂ts
�F − e2

mh̄
�F 2, (A3)

∂ �ks

∂ts
= �ks

t−ts
− e

h̄
�F, (A4)

∂φd

∂ts
= − h̄

2m
�k2

s − 1

h̄
Ip, (A5)

∂2φd

∂t2
s

= − h̄

m

�k2
s

t − ts
+ e�ks · �F . (A6)

In Eq. (A2), f , φd , their derivatives, and �F are evaluated
at �ks and ts pairs solving Eq. (28). For linearly polarized
driving field, ∂2φd

∂t2
s

[Eq. (A6)] and all but the last term in ∂3φd

∂t3
s

[Eq. (A3)] vanish. For low-frequency fields, these terms remain
negligible for moderate nonzero ellipticities as well (high-
order-harmonic signal vanishes for large ellipticities [98]), so
that

∂2φd

∂t2
s

≈ 0, (A6a)

∂3φd

∂t3
s

≈ − e2

mh̄
�F 2. (A3a)

We now note that [Eq. (10.4.32) of Ref. [142]]∫ ∞

−∞
eiat3+ixt dt = 2π

(3a)1/3
Ai

(
x

(3a)1/3

)
, (A7)

∫ ∞

−∞
teiat3+ixt dt = −i

2π

(3a)2/3
Ai′

(
x

(3a)1/3

)
, (A8)

where Ai is an Airy function. [Equation (A8) is obtained by
differentiating Eq. (A7) with respect to x.] Therefore, Eq. (A2)
becomes

I ≈ e−iφd 2π

[
f

(
2mh̄

e2 �F 2

)1/3

Ai(ζ ) − i

(
∂f

∂ts
+ ∂f
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· ∂ �ks

∂ts

)

×
(

2mh̄

e2 �F 2

)2/3

Ai′(ζ )

]
, (A9)

ζ =
(

2m

e2h̄2 �F 2

)1/3(
Ip + h̄2�k2

s

2m

)
, (A10)

where again all quantities are evaluated at pairs �ks, ts satisfying
Eq. (28). If multiple roots are present, summation over all roots
is implied.

APPENDIX B: DERIVATION OF EQ. (30)

The presence of the vibronic state energy expectations
Ebm and Ea′′′n′′ , rather than the manifold average Ip, in
Eq. (31) is intuitively appealing, but requires some additional
justification. Application of Eq. (A9) to the integral of Eq. (26)
leads to

ϒbma′′′n′′′ = �F(ts) · �Rbma′′′n′′′ (�ks)2π

(
2m

e2h̄2 �F 2(ts)

)1/3

Ai(ζ )

− 2iπ �F(ts) · �Rbma′′′n′′′ (�ks)
∂

∂ts
lnCa′′′n′′′(ts)

(
2m

e2h̄2 �F 2(ts)

)2/3

Ai′(ζ )

053405-14



FULL-DIMENSIONAL TREATMENT OF SHORT-TIME . . . PHYSICAL REVIEW A 96, 053405 (2017)

− 2iπ �F(ts) · �Rbma′′′n′′′ (�ks)
∂

∂ts
lnDb′m′bm(t,ts)

(
2m

e2h̄2 �F 2(ts)

)2/3

Ai′(ζ )

− 2iπ
∂

∂ �ks

[ �F(ts) · �Rbma′′′n′′′ (�ks)] ·
(

h̄�ks
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− e �F (ts)

)(
2m

e2h̄2 �F 2(ts)

)2/3

Ai′(ζ ), (B1)

where we have neglected the ts and �ks dependence of the
recombination dipole and the overall prefactor and ζ is given
by Eq. (A10). Formal differentiation of Eqs. (22) and (23)
gives

∂

∂t1
Db′m′bm(t,t1) = i

h̄
eiEI(t−t1)/h̄〈m′|〈Xb′ |ÛI(t,t1)

× [ĤI(t1) − EI]|Xb〉|m〉, (B2)

∂

∂t1
Cana′n′(t1,t0) = − i

h̄
eiEN(t1−t0)/h̄〈n|〈�a|[Ĥ0(t1) − EN]

× Û0(t1,t0)|�a′ 〉|n′〉. (B3)

If the Hamiltonians ĤI and Ĥ0 are diagonally dominant in the
basis of corresponding vibronic product states, Eqs. (B2) and
(B3) reduce to

∂

∂t1
Db′m′bm(t,t1) ≈ i

h̄
(Ebm − EI)Db′m′bm(t,t1), (B4)

∂

∂t1
Cana′n′(t1,t0) ≈ − i

h̄
(Ean − EN)Cana′n′(t1,t0), (B5)

where Ebm and Ean are given by Eqs. (32) and (33).
Substituting Eqs. (B4) and (B5) into Eq. (B1), we note that

the first three terms are in fact the lowest-order contributions
to the Taylor expansion of the first term in Eq. (30) for δE =
(Ebm − Ea′′′n′′′ ) − Ip. Similar expansion for the second term
corresponds to a term quadratic in τ , neglected in deriving
Eq. (A9). To within the accuracy expected from Eq. (30), we
can therefore replace Ip by (Ebm − Ea′′′n′′′ ) in the last term
of Eq. (B1) as well, giving Eq. (31). The exponential part of
Eq. (31) coincides with the result of the weak-field asymptotic
tunneling theory (WFAT) [143].

APPENDIX C: EVALUATION OF THE
FOURIER-TRANSFORM INTEGRALS IN Eq. (18)

Evaluation of matrix elements appearing in Eq. (18)
requires calculation of Fourier transforms of the “cradle”
orbitals �φC

ba and products of the Dyson orbitals φD
ba and a

dipole operator �r . Here, both Dyson and cradle orbitals are
given by an expansion over atom-centered Cartesian Gaussian-
type orbitals. The desired integrals are readily obtained
by a simple modification of standard one-electron integral
packages.

Indeed, closely following the approach of Ahlrichs
[144], the primitive integral I0,0 is given by [cf.

Eq. (7) of [144]]

I0,0 = 〈0|ei�k·�r |0〉

=
∫

d�re−α|�r−A|2ei�k·�re−β|�r−B|2

= eξ |B−A|2
(

π

ζ

)3/2

ei�k·Pe−�k2/4ζ , (C1)

|a〉 = (x − Ax)ax (y − Ay)ay (z − Az)
aze−α|�r−A|2 , (C2)

P = αA + βB
α + β

, (C3)

ζ = α + β, (C4)

ξ = αβ

α + β
. (C5)

Functions |a〉 are unnormalized Cartesian Gaussians with
quantum numbers a and exponent α, centered at A [Eq. (1) of
[144]], and analogously for |b〉. Applying the usual generating
operators [M̂ of Eqs. (17) and (29) of [144]], we immediately
obtain the recursion relation

Ia+1p,b =
(

Pp − Ap + ikp

2ζ

)
Ia,b + ap

2ζ
Ia−1p,b + bp

2ζ
Ia,b−1p

,

(C6)

where p is a Cartesian direction (p = x,y,z), a = (ax,ay,az),
and 1p is a unit three-vector containing 1 in position p. Noting
that

rp|a〉 = |a + 1p〉 + Ap|a〉, (C7)

we then obtain

〈a|rpei�k·�r |b〉 = Ia+1p,b + ApIa,b

=
(

Pp + ikp

2ζ

)
Ia,b + ap

2ζ
Ia−1p,b + bp

2ζ
Ia,b−1p

.

(C8)

We note that Eqs. (C6) and (C8) are nearly identical to the
standard recursion relations for the overlap and dipole integrals
[145,146]. Finally, by choosing b = 0, β = 0, and B = 0 in
Eqs. (C6) and (C8), we obtain the desired expressions for the
Fourier transforms of the primitive Gaussian |a〉 and its first
Cartesian moments.
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