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We report on the generation of harmonic-like photon up-
conversion in a LiNbO3-based nonlinear photonic crystal
by mid-infrared (MIR) femtosecond laser pulses. We study
below bandgap harmonics of various driver wavelengths,
reaching up to the 11th order at 4 μm driver with 13% ef-
ficiency. We compare our results to numerical simulations
based on two mechanisms: cascade three-wave mixing and
non-perturbative harmonic generation, both of which in-
clude quasi-phase matching. The cascade model reproduces
well the general features of the observed spectrum, includ-
ing a plateau-like harmonic distribution and the observed
efficiency. This has the potential for providing a source
of tabletop few femtosecond ultraviolet pulses. © 2017
Optical Society of America

OCIS codes: (190.0190) Nonlinear optics; (260.0260) Physical

optics; (320.0320) Ultrafast optics; (220.0220) Optical design and
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Soon after the discovery of the laser, nonlinear light-matter
interactions were demonstrated for frequency upconversion
[1]. Since then, high-order nonlinear interactions have gener-
ated coherent frequency combs in gases, plasmas and, more
recently, solids, extending into the soft x-ray range [2–5].
Despite a broad range of potential applications of a high-order
harmonic light source, limitations have been imposed by poor
production efficiency (10−5 level) [6].

In general, phase matching plays the essential role in
enhancing the harmonic yield [7–10]. Various phase-matching
techniques have been applied to gas media, but are not
always applicable to solids. Conversely, a powerful way to en-
hance the harmonic yield in solids is quasi-phase matching
(QPM) using periodic poling in a crystal [11,12]. However,
this has been effective only for high efficiency second-harmonic

generation (80% conversion) [13,14] by utilizing a material
with a high nonlinear susceptibility along the poling direction
and a proper poling periodicity. In addition, a cascade process
of sum-frequency generation (SFG) has been demonstrated to
simultaneously generate second and third harmonics with rel-
atively high efficiency [15,16]. Recently, highly efficient har-
monic generations up to the eighth order of a mid-infrared
(MIR) wavelength have been reported in a chirped periodically
poled lithium niobate (CPPLN) crystal. Chen et al. interpreted
their result as a series of SFG processes assisted by QPM,
proposing a new approach to ultrafast broadband light
sources [17].

Despite promising experimental progress, there has been a
lack of detailed theoretical treatments. The absence of theoretical
analysis limits fundamental understanding and, thus, restricts
further applications such as optimization of the poling structure
for a specific application. At this point, a fundamental question
remains: is it possible to efficiently produce harmonics by non-
perturbative high-order harmonic generation (NPHHG), which
has been established for semiconductor crystals [5,18,19]
instead of cascade SFG?

In this Letter, we report on a harmonic-like frequency comb
generated in a fractal-poling LiNbO3 (FPLN) crystal at 2, 3.6,
and 4 μm driver wavelengths, verifying its generality in the ul-
trafast MIR regime. We have observed higher-order and larger
cutoff energies than previously reported with similar efficien-
cies. We present two numerical simulations of wave propaga-
tion based on a cascade of second-order nonlinear processes
(χ�2�) and NPHHG in a periodically poled domain. In com-
parison to the experimental results, the cascade χ�2� model
shows excellent agreement, in contrast to the NPHHG. From
the analysis, the higher cutoff and efficiency are attributed to
the existence of a higher spatial frequency of poling in our
Sierpinski carpet fractal structure and a shorter crystal length,
respectively, in comparison to Ref. [17]. Furthermore, we dis-
tinguished the possible cascade pathways in terms of yield,
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providing a path for an optimal poling structure. Finally, we
discuss possible cascade pathways for higher yield, providing
another design with optimization parameters. Our understand-
ing in designing nonlinear photonic crystals may allow the
generation of a bright ultrafast vacuum ultraviolet (UV) light
and open novel pathways for nonlinear light-matter coupling
enhancement [20], nano-photonic waveguides [21], photon-
entanglement sources [22], etc.

A fractal-structure poling is imprinted in a LiNbO3 (LN)
single crystal by the electric poling method [23,24], and the
arrangement of the poled area is designed such that the fourth-
order fractal structure is formed, as illustrated in the inset of
Fig. 1. The poling direction along the z-axis is in the c-axis
of the crystal and the laser polarization direction. The sample
size is 8 mm × 8 mm with 0.5 mm thickness. For the 2 μm
driver, we use a modified Spectra-Physics OPA-800 laser sys-
tem producing 70 fs pulses centered at 2.05 μm with a power
density up to 10 TW∕cm2. For the longer wavelength studies,
a homebuilt optical-parametric amplifier system produces
100 fs pulses centered at 3.6 and 4.0 μm with a 300 nm band-
width and a power density of 2 TW∕cm2. The laser beams are
incident along the x-axis and focused by the 30 and 25 cm focal
lenses. A calibrated spectrometer (Ocean Optics USB+2000)
detects the harmonic emission.

Figure 1 shows the experimental geometry and the
output light scattered off a white screen for a 3.6 μm driver
wavelength. The emission spectral content consists of bright
white light along the propagation axis and angularly dispersed
visible colors diverging off-axis. The off-axis visible light can be
explained by different phase-matching angles for different har-
monic orders via the 2D spatial frequencies of the poling struc-
ture. This type of QPM with a 2D fractal structure has been
observed in Cerenkov-type harmonic generation [25,26]. The
phase matching from the red through blue colors for increasing
angles is consistent with our observation, as shown in Fig. 1.
Here our analysis is focused on the intense on-axis white light
emission.

Figure 2 shows the on-axis white light using an intensity-
calibrated spectrometer. The spectral distribution features a pla-
teau of harmonics followed by a cutoff. The detected cutoffs are
below the material bandgap of 4 eV for LN. The energy con-
version efficiency is about 13%, including all harmonics, and
the cutoff corresponds to the sixth, 10th, and 11th orders at

2.0, 3.6, and 4 μm, respectively. In comparison to Ref. [17],
the cutoff energy is higher, but with a lower efficiency.

To understand QPM in a poled crystal, it is more straight-
forward to describe the poling structure of the crystal in the
spatial frequency domain. The crystal poling structure f �x� ac-
counting for the sign of poling as a function of position, x, can
be written in terms of spatial frequency via a discrete Fourier
transform: f �x� � P

mFme
iK mx; where Km � 2mπ

L is the spatial
frequency supported by a crystal with length L, and Fm is the
mth-order Fourier coefficient of f �x�. For a driver wave vector,
k, the phase mismatch (Δk) between the driver and its
qth harmonic order with wave vector kq can be compensated
for by a spatial frequency KM � 2π

λ with a poling period λ so
that Δk � kq − qk − KM � 0. If we consider a limiting case
where the pump laser is not depleted during propagation
and kq − qk � KM , the intensity of the qth harmonic field
grows monotonically, and its growth rate is proportional to
FM . In contrast, if kq − qk ≠ KM , then the intensity of the
qth harmonic field oscillates as a function of x and does not
grow efficiently. Following this general principle, Chen and
coworkers designed a CPPLN crystal, which forms a series
of bands of various spatial frequencies, i.e., many KM s.
As a result, the CPPLN crystal supports phase matching for
a broad driver bandwidth, producing high harmonic yields.
Alternately, the existence of larger spatial frequencies (larger
KM or smaller λ) helps to achieve higher orders. In our
FPLN crystal, the smallest λ period is 13.64 μm, which is
shorter than the ∼28 μm used in Ref. [17], and is responsible
for the higher cutoff energy.

For a more comprehensive analysis, we have developed a
model based on cascade SFG and difference frequency gener-
ation (DFG) with QPM by propagating coupled wave equa-
tions, dubbed the cascade three-wave mixing (C3WM)
model [11,27]. In the calculation, all field parameters are iden-
tical to the experiments and focal averaging accounts for the
distribution of arrays with different poling structures within
the focal volume. The C3WM numerical spectrum is obtained
by propagating a fundamental field, A�0;ωL� � A0e−�

ωL−ωC
σ �2 ,

taking into account all first- and second-order processes, i.e.,
absorption, SFG, and DFG as follows:

Fig. 1. Photograph of the experimental scheme. Inset: the fractal-
poling structure of the LN crystal, where the black and white shadings
represent the sign of the poling. The MIR pump propagates along the
x-axis and is polarized in the z-direction. The output light is imaged on
a screen placed 20 cm away.

Fig. 2. Observed spectra along the propagation direction at (a) 2.0,
(b) 3.6, and (c) 4.0 μm at room temperature. The vertical dashed lines
indicate the expected harmonic energy spaced by hνC.
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A�x � dx;ω�

� A�x;ω� − αωA�x;ω� � f �x�dx iωd 33

4n�ω�c

×
�Z

ω

ω0

dω̃A�ω̃�A�ω − ω̃�e−i�k�ω�−k�ω̃�−k�ω−ω̃��x 0

�
Z

ω1−ω

ω0

dω̃A�ω̃�A�ω� ω̃�e−i�k�ω��k�ω̃�−k�ω�ω̃��x 0
�
; (1)

where x is the position in the propagation direction, d 33 is the
second-order susceptibility (d 33 � 27 pm∕V), αω is the ab-
sorption coefficient, n�ω� is the refractive index, c is the speed
of light in vacuum. ω is the frequency of the generated field and
∀ω ∈ �2ω0;ω1 − ω0�, ωL is the laser frequency, σ is the laser
bandwidth, ωC is the laser’s central frequency, and ω0 and ω1

are the low and high limits of the frequency in the calculation,
respectivy. The boundary, �ω0 ω1� � �0.1 4eV�, is chosen to
be below the bandgap, where the refractive index for LN is
known. The second term is the absorption term, and the third
and fourth terms represent the SFG and DFG processes,
respectively. This model is more complete than the previous
interpretation in Ref. [17], which does not consider the down-
conversion process. For example, the sixth-harmonic order can
be produced by DFG between the fifth to 11th orders, as well
as by SFG between the fundamental and fifth orders. The blue
curve in Fig. 3(a) shows the calculated spectra at 3.6 μm and
well reproduces the observed spectrum (the gray curve), includ-
ing the plateau-like distribution and efficiency of about 10%.
Similar agreement is observed at other wavelengths. First, we
find that including DFG is necessary for convergence of the
calculations and good agreement with the experimental results.
We find that DFG, not considered in Chen’s interpretation, is
physically essential. To isolate the QPM effects, the calculation
is performed for a regular LN crystal. As illustrated by the red
dashed curve, HHG intensity by the cascade process without
QPM rapidly and monotonically decays toward the higher
order, highlighting the role of QPM to reach high orders.

Second, the generation of the qth harmonic order depends
on the building up of the lower orders (<q) in the cascade proc-
ess. As a result, the third and higher harmonics, the amplitude
of the pump, cannot be considered to be constant along the
direction of propagation. Consequently, we conclude that
the growth rate of the harmonic field is not simply determined
by the Fourier coefficients. This is clear when comparing the
harmonic signal with the Fourier coefficients. For example, the
second- and third-harmonics and the corresponding Fourier
coefficients as a function of driver photon energy are plotted
in Fig. 4(a). For the second-harmonic generation [top of
Fig. 4(a)], the yield (red curve) is mainly determined by the
Fourier coefficients (blue dash) for all driver energies. However,
this is no longer true for the third order (and the higher orders
not shown). As marked by the vertical lines in the bottom of
Fig. 4(a), some peaks of the third harmonic in the yield (red
curve) do not coincide with the peaks of the Fourier coefficient
(blue dash). Yet, it should be noted that the growth rate of the
harmonic yield is proportional to the Fourier coefficient if we
limit our discussion to harmonics by n identical photons
(ω� ω� � � � � ω → nω), i.e., harmonic generation from
the χ�n� process, with an assumption of no depletion of pump.

In comparison, we have calculated the propagation effects
on NPHHG with QPM. NPHHG is driven by nonlinear os-
cillations of transition dipoles between valence and conduction
bands, the so-called interband model [18]. Note that we do not
consider NPHHG by nonlinear currents, the so-called intra-
band model [19], since the currents are not affected by the po-
ling process. Here we assume that the microscopic response of
the interband transition dipole is uniform through the crystal
[21], and the sign of the interband polarization term is changed

Fig. 3. Calculated spectra from the C3WM and NPHHG models
at 3.6 μm. (a) The gray solid line is from the experiment, the blue solid
line is from the C3WMmodel in the FPLN crystal, and the dotted red
line is from a regular LN crystal. (b) The blue solid line is from an
NPHHG model in the FPLN crystal, and the dotted red line is
the Fourier coefficient of the FPLN. The vertical solid lines indicate
the lower detection limit of our spectrometer, and the dotted lines
indicate the harmonic energy.

Fig. 4. (a) Comparison of the harmonic intensity and the Fourier
coefficient as a function of driver photon energy. The red curves are the
harmonic intensities (top for second harmonic and bottom for third
harmonic), and the blue curves are the Fourier coefficient. (b) Phase
mismatch for different harmonics at different SFG pathways. The
cross points indicate examples for the 3.6 μm driver.
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according to the poling. The blue curve in Fig. 3(b) shows the
result. First, the intensity of the harmonics decays rapidly with
the harmonic order. This is because the QPM effects in this case
simply rely on the amplitude of the Fourier coefficients (FM ).
The Fourier coefficient (red dashed curve) decreases for larger
spatial frequency (K M ), i.e., a larger phase mismatch in higher
order (qk − kq). Consequently, a decrease of both the coherence
length and the Fourier coefficient at the phase mismatch
frequencies results in less yield enhancement by QPM in
the higher-order harmonics. Therefore, we conclude that the
poling frequency in our crystal is too low to provide good
QPM for the NPHHG process.

Practically, the proper design of the crystal is a prerequisite,
depending on the specific application. First, a higher cutoff de-
mands a larger poling spatial frequency, i.e., a smaller poling
period in order to match coherence length for a higher order.
Secondly, the spatial frequency should be optimized for a spe-
cific efficient path, among others, since absorption limits the
crystal length, thus restricting the number of the poling periods
(λ). Figure 4(b) shows the phase mismatch as a function of pho-
ton energy in SFG for different harmonic generations. For
instance, the most (the least) efficient pathway for generating
the 10th order is SFG of ω and 9ω (5ω and 5ω) to minimize
the phase mismatch, while SFG of 2ω and 2ω (ω and 3ω) is the
most (the least) efficient for the fourth order. The spatial
frequency at K M � 3 × 106 rad ·m−1 will be a good choice
to optimize the 11th order, as well as to produce 9th and
10th orders. In addition, a larger number of λ reduces the
amplitude of the Fourier coefficient, Fm [16].

In conclusion, we have demonstrated high harmonic gener-
ation in a FPLN crystal, and generalized the application in the
IR and MIR regimes. The primary mechanism for high-order
harmonic generation with efficiencies approaching ∼13% is
confirmed by our C3WMmodel to be the cascade process with
QPM. We show that the key ingredients of a poling design for
an efficient broadband HHG are the existence of a small poling
period and the selection of the period that minimizes phase
mismatches. Engineering a new crystal based on our under-
standing would help to produce an intense femtosecond UV
source, although characterization of the pulse needs to be per-
formed prior to its applications.
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