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We predict that electrons in an ion channel can gain ultra-relativistic energies by simultaneously inter-

acting with a laser pulse and, counter-intuitively, with a decelerating electric field. The crucial role of

the decelerating field is to maintain high-amplitude betatron oscillations, thereby enabling constant

rate energy flow to the electrons via the inverse ion channel laser mechanism. Multiple harmonics of

the betatron motion can be employed. Injecting electrons into a decelerating phase of a laser wakefield

accelerator is one practical implementation of the scheme. Published by AIP Publishing.
https://doi.org/10.1063/1.5036967

I. INTRODUCTION

Far-field accelerators occupy an important niche in the

field of advanced electron accelerators. Such accelerators uti-

lize a transverse electromagnetic wave that resonantly inter-

acts with electrons undergoing transverse motion. Examples

of such transverse motion include electron undulation in the

transverse magnetic field, electron gyration in the longitudi-

nal magnetic field, or betatron motion in the confining focus-

ing channel. The corresponding accelerator schemes are,

respectively, referred to as inverse free-electron laser

FEL,1–3 cyclotron resonance laser (CRL),4–6 and ion-channel

laser (ICL).7–9

The main advantage of the far-field inverse laser

schemes is their simplicity: no electromagnetic structure is

required because the acceleration is accomplished by the

Wk /~v? � ~B
ðLÞ
? force directly exerted on the electron beam

by the transverse component of the laser’s electromagnetic

fields ð~EðLÞ; ~BðLÞÞ. The main drawback is that, in general, the

acceleration gradient Wk tends to decrease as the relativistic

electron energy cmc2 increases. For example, Wk / 1=c for

inverse FELs and Wk / 1=
ffiffiffi
c
p 5 for inverse CRLs, thereby

reducing the usefulness of these schemes to moderate c’s.

Such reduction is caused by a rapid decrease in j~v?j and can-

not be cured by simply maintaining the wave-particle syn-

chronism.5,6 Therefore, it can only be overcome if a suitable

mechanism for steadily increasing the magnitude of the

transverse electron momentum ~p? ¼ cm~v?, as well as its

phase with respect to the laser field ~E
ðLÞ

, can be found.

In this paper, we propose that both requirements can be

satisfied for an inverse ICL if a small constant decelerating
longitudinal electric field is applied to the electrons undergo-

ing betatron motion inside an ion channel. The channel can be

produced by the space charge of the electron beam itself,7,10

or by the ponderomotive pressure of an ultra-intense laser

pulse that creates a plasma “bubble.”11 Practical realization of

the inverse ICL, where electrons are externally injected into

the leading (decelerating) part of the plasma bubble, is sug-

gested and analyzed using particle-in-cell (PIC) simulations.

The relativistic electron dynamics is analytically reduced to

that of a nonlinear pendulum.

Earlier work on direct laser acceleration (DLA)8,9,12–15

demonstrated that a relatively small energy from the laser,

DAL, can be added to that gained from the accelerating lon-

gitudinal electric field, DAW > 0, under special electron

injection conditions and laser pulse formats: large initial

transverse energy of the injected electrons and the elongated,

asymmetric, or multi-peaked laser pulse.13–15 The unique

feature of the acceleration mechanism proposed in this paper

is that the small longitudinal electric field actually reduces
the energy of the beam by DAW < 0, but in doing so modifies

the transverse electron dynamics to ensure that the direct

energy gain is twice as high: DAL � 2jDAW j. Moreover, the

above stringent conditions on the laser and the electron beam

need not apply.

The rest of the paper is organized as follows: In Sec. II,

we introduce a minimal model of the electron acceleration in

an ion channel under the combined action of the oscillating

laser field and the stationary longitudinal decelerating elec-

tric field. We qualitatively analyze and numerically solve the

relativistic equations of electron motion. In Sec. III, we

develop an analytical theory drawing analogy with the

motion of a pendulum and explain the essential features of

electron acceleration in the presence of a longitudinal decel-

erating field. Section IV presents PIC simulations validating

the developed theory. Conclusions and future research direc-

tions are summarized in Sec. V.

II. MINIMAL MODEL AND QUALITATIVE ANALYSIS

We start by introducing a simple model of the electron

motion in the combined focusing field ~F? ¼ �mx2
p~r?=2 of a

cylindrical ion channel (where xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pe2n=m

p
is the

plasma frequency, n is the plasma density, m is the electron

mass, and ~r? ¼ y~ey þ z~ez is the transverse electron’s posi-

tion), the electromagnetic field of a linearly (y-)polarized

laser beam propagating with the phase velocity vph in the

x-direction, and a constant decelerating electric field
~Edec ¼~exEk. The planar laser fields are assumed in the form
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of E
ðLÞ
y ¼ E0 cos u and BðLÞz ¼ cE

ðLÞ
y =vph, where u ¼ xLðx=

vph � tÞ is the laser phase. The relativistic equations of

motion are given by

d

dt
c

dx

dt

� �
¼ � e

m
Ek þ E0

vy cos u
vph

� �
; (1)

d

dt
c

dy

dt

� �
¼ �

x2
py

2
þ eE0

m

vx

vph

� 1

� �
cos u; (2)

where _x ¼ vx ¼ px=mc; _y ¼ vy ¼ py=mc, and _f � df=dt for

any variable f.
An integral of motion I0 can be derived from Eqs. (1)

and (2)

I0 ¼ c� pxvph

mc2
þ

x2
py2

4c2
þ

eEkvph

xLmc2
u; (3)

and the definition of c ¼ ð1þ p2
x=m2c2 þ p2

y=m2c2Þ1=2
can be

used in combination with Eq. (3) to express py in terms of

(u, px), thereby eliminating the transverse dynamics given

by Eq. (2). In the paraxial approximation (p2
x � p2

y � m2c2),

the transverse energy16,17 e? ¼ 1
2c jpxj _y2 þ 1

4
mx2

py2 can be

conveniently expressed as

e? ¼ mc2I0 �
eEkvph

xL
uþ vphpx � cjpxj: (4)

Equation (4) is greatly simplified in the case of a lumi-

nous laser pulse with vph¼ c. After taking into account that

_u / ðvx=c� 1Þ < 0 and assuming that the electrons are

accelerated in the forward direction by the laser, i.e., px > 0,

it follows that _e? / Ek. This result implies that, regardless of

the amplitude of the laser, the accelerating longitudinal field

(�eEk > 0) depletes the energy of transverse oscillations e?,

thereby suppressing the inverse ICL mechanism. Therefore,

the effective synergy of DLA and longitudinal field accelera-

tion can be achieved only for those electrons with large ini-

tial transverse energy,15 thus constraining the injection.

A very different dynamics, which is the subject of this

paper, emerges in the case of the decelerating longitudinal

field (�eEk < 0), where two scenarios can be realized: (1)

e? increases for the forward-accelerated electrons and (2) e?
decreases for the electrons accelerated in the backward direc-

tion (px < 0) by the longitudinal field. Because the inverse

ICL mechanism is suppressed in the latter case, we concen-

trate on scenario (1), where the longitudinal field pumps

energy into transverse betatron oscillations, thereby enabling

steady-state acceleration of the particle by the laser wave

against the decelerating force �eEk.
The effect of the decelerating longitudinal electric field

enhancing the energy of the transverse motion is counter-

intuitive because, while the two degrees of freedom are

decoupled for non-relativistic particles, it is no longer the

case for ultra-relativistic electrons. Specifically, by re-

writing Eq. (2) without the laser field in a more conventional

form12,18 as €y þ C _y þ x2
by ¼ 0, where xb ¼ xp=

ffiffiffiffiffi
2c
p

is the

betatron frequency and C ¼ _c=c is the damping rate due to

relativistic mass increase. Because, in the absence of the

laser, _c � �eEk=mc, we find that C < 0 for the decelerating

electric field, resulting in the growth of betatron oscillations.

To investigate the effect of combining the decelerating

longitudinal field with that of a laser, we have propagated an

ensemble of test electrons from x¼ 0 to x¼ 105kL according

to Eqs. (1) and (2). The test electrons were initialized with

px¼ 25mc and uniformly loaded into a transverse phase

space corresponding to 0 < �?0 < 1.6mc2 as shown in Fig. 1,

where particles are color-coded according to gained energy.

Note that the maximum of the transverse energy 1.6mc2 cor-

responds to the following ranges of the transverse coordinate

and momentum: jyj < 2:5k�1
p and jpyj < 9mc. The simula-

tion parameters a0� eE0/mxLc¼ 2.12, ak � eEk=mxLc
¼ 0:01, and xp¼xL/30 correspond to the laser intensity

IL¼ 1019W/cm2, the decelerating field of 0.4 GeV/cm, and

the electron plasma density n¼ 2� 1018 cm�3 for the laser

wavelength kL¼ 0.8 lm.

The electron phase space undergoes a complicated frag-

mentation shown in Figs. 1(a) and 1(b), where four distinct

color-coded groups of electrons can be identified. The

backward-moving group of particles with the final momen-

tum px � –pfin � –6� 103mc group (green) corresponds to

scenario (2), while the other three groups with px � pfin that

are color-coded according to their increasing �? as blue, red,

and black correspond to scenario (1). Because the work done

by the longitudinal force on the forward-moving particles is

negative and equal to DAW � –cpfin, by implication, the

work done directly by the laser via the inverse ICL mecha-

nism is DAL¼ –2DAW. Note that even though Ek � E0, the

FIG. 1. Inverse ICL acceleration of test electrons in an ion channel by the

combination of a laser pulse propagating with the speed of light and a uni-

form decelerating electric field. (a) Color-coded energy gain as a function of

initial conditions in the transverse (y, py) phase plane. (b) Four distinct

groups of accelerated electrons in the (px, e?) phase space: backward-

accelerated electrons (green, no laser contribution); forward-accelerated

electrons by the laser pulse resonant with the first (blue), third (red), and fifth

(black) harmonics of the betatron motion. (c) Electron spectrum with

ak ¼ 0:01 (blue: all resonant orders) and with ak ¼ 0. Propagation distance:

x¼ 105kL. Parameters: a0 � eE0=mxLc ¼ 2:12; ak � eEk=mxLc ¼ 0:01,

and xp¼xL/30.
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longitudinal field has a profound stabilizing effect on the

inverse ICL acceleration. Remarkably, numerical integration

of Eqs. (1) and (2) with Ek ¼ 0 and other same conditions

yields a much smaller maximum achievable electron momen-

tum px �1.2� 103mc. The spectra of electrons with and with-

out a decelerating electric field are compared in Fig. 1(c).

III. ANALYTICAL THEORY

To understand the physics and the limits of the inverse

ICL acceleration in the presence of the decelerating electric

field, we develop below an analytic theory that assumes (i)

linear laser polarization, (ii) luminal phase velocity vph¼ c,

and (iii) ultra-relativistic forward-accelerated electrons with

px� mc. The super-liminal case (vph > c) is briefly analyzed

towards the end of this section and the case of finite elliptic-

ity of the laser field is addressed in Appendix A. For conve-

nience, we replace the longitudinal degrees of freedom

(x, px) by ðu; ~px � px=mcÞ and use the energy-angle varia-

bles IðtÞ � e?=mc2 and the betatron oscillation phase w to

express the betatron oscillation as y ¼ 2ðc=xpÞ
ffiffi
I
p

cos w,

where _w ¼ xb, and we have assumed that in the ultra-

relativistic paraxial limit c � ~px. Assuming that the variation

of ~px during one betatron period is small (i.e., h _wi � hxbi
� xb, where h	i denotes averaging over one betatron period),

the transverse velocity is given by vy ¼ v
 sin w, where

v
=c ¼
ffiffiffiffiffiffiffiffiffiffiffi
2I=~px

p
.

Next, we introduce the time-averaged equation of

motion by averaging the Doppler-shifted laser frequency in

the electron’s reference frame defined as _u ¼ �xD, where

xD ¼ xLð1� vx=vphÞ � xLðv2

=2c2Þ sin2w for vph¼ c. In the

paraxial approximation, the time-averaging of h _ui � ��xD

yields �xD ¼ xLI=ð2~pxÞ. Neglecting the difference between

h~pxi and ~px, the time-averaging of Eq. (1) yields
_~px ¼ �xLak � xLa0ðv
=cÞg. The time-averaged laser-parti-

cle interaction strength g ¼ h sin w cos ui does not vanish

upon averaging only if the resonance condition �xD � lxb is

satisfied for at least one odd betatron harmonic, in which

case g � al sin hl, where hl ¼ hui þ lw is the phase detuning

between the laser field and the odd-integer l’th harmonic of

the betatron motion.19,20 The largest non-vanishing coeffi-

cients are a1 � 0.35, a3¼ 0.16, and a5¼ 0.11. Note that this

resonant condition holds for approximately 40% of electrons

in single particle simulations presented in Sec. II.

To further simplify the calculation, we assume the reso-

nance with the l’th betatron harmonic and express the aver-

aged equations of motion as

_~px ¼ �xLak 1þ 2v


vðlÞcr

sin hl

 !
; _hl ¼ lxb � �xD; (5)

_I ¼ I
akxL

2~px

; _w ¼ xb; xb ¼ xp=
ffiffiffiffiffiffiffi
2~px

p
; (6)

where Eq. (4) was used to express _I and vðlÞcr ¼ 2cak=ala0 is

the critical betatron velocity such that, as shown below, the

inverse ICL acceleration stops for v
 < vðlÞcr . For a resonant

electron with the ð~px; IÞ ¼ ðpr; IrÞ momentum/energy satisfy-

ing �xDð~pr; IrÞ ¼ lxbð~prÞ, the following relationship must

hold all times: Ir=
ffiffiffiffiffiffiffi
2pr

p
¼ lxp=xL. Therefore, after integrat-

ing Eq. (6), we obtain the following solution:

~prðtÞ ¼ ~p0 þ akxLt;
vr

c
¼ lxp

xL

� �1=2
2

prðtÞ

� �1=4

; (7)

where the slow decrease in the resonant electron’s trans-

verse velocity vr � v
ðIr; prÞ is compensated by the slow

drift of its phase according to sin hðlÞr ¼ �vðlÞcr =vrðtÞ to

ensure the constant-gradient acceleration represented by

Eq. (7).

It immediately follows from Eq. (7) that a resonant parti-

cle gains energy via the inverse ICL mechanism at the rate

that is twice the rate of energy loss to the decelerating longitu-

dinal field regardless of the order of the betatron resonance,

i.e., DA(L)¼ –2DA(W) for any value of l� 1. However, the

resulting transverse energy gains e?/ l. This scaling explains

the physical reason for the fragmentation of the electron phase

space observed in Fig. 1(b): the transverse energy “plateaus”

of accelerated electrons with different values of e? correspond

to different resonant betatron harmonics. Moreover, it follows

from jsin hðlÞr j � 1 that the maximum energy gain correspond-

ing to sin hðlÞr ¼ �1 depends on the harmonic number

~pmaxðlÞ ¼
l2a4

l

2

xp

xL

� �2 E0

Ek

� �4

: (8)

Because the quantity l2a4
l decreases with l, the following

hierarchy of energy gains is established between the three

lowest harmonics: ~pð1Þmax > ~pð3Þmax > ~pð5Þmax.

To verify these analytic predictions, three test particles

labeled as blue (l¼ 1), red (l¼ 3), and black (l¼ 5) are selected

from the phase space shown in Fig. 1(a) and propagated up to

x¼ 4� 105kL (i.e., over a 4 times longer distance than in Fig.

1). The electrons from all three groups are clearly accelerated

at the same constant rate as shown in Fig. 2(a). The main dis-

tinction between the three groups is their gained transverse

energy: de?/dt increases with the harmonic number as shown

in Fig. 2(b). The amplitude v* of the betatron velocity, which is

extracted from vy(t) by time-averaging, is shown in Fig. 2(c).

As predicted by Eq. (7), v* decreases with time and the acceler-

ating gradient is kept up at its constant value by the increase in

jsin hj as shown in Fig. 2(d). However, when v
 ¼ vðlÞcr and

sin h ¼ �1 conditions are reached, constant-gradient accelera-

tion stops and the electron’s energy starts rapidly decreasing

after the critical time t¼ tmax as shown in Fig. 2(a).

To understand the physics of the abrupt transition at

t¼ tmax from constant-gradient acceleration to rapid deceler-

ation, we linearize Eq. (5) around the resonant particle’s

momentum according to ~px ¼ ~pr þ d~p (here, we assume

l¼ 1 and drop the harmonic label). A pendulum-like equa-

tion is obtained (see Appendix B for the details of the lineari-

zation procedure) as follows:

d

dt
MI

dh
dt
¼ �T

vcr

vrðtÞ
þ sin h

� �
; (9)

where MI ¼ I3x2
L=x

4
p and T ¼ 2a1a0xp=ðI1=2xLÞ. Note that

vr(t) > vcr for early t < tmax times, so that Eq. (9) has a
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slowly evolving stable equilibrium point hðtÞ ¼ �sin�1ðvcr=
vrÞ. The equilibrium point disappears at t¼ tmax when the

phase reaches h¼ –p/2 which separates the oscillation and

rotation regions of the pendulum’s phase space.

Therefore, for t > tmax, the pendulum starts rotating with

an increasing speed under the action of a constant torque. In

the context of electron acceleration, this implies that, while

the amplitude of the Lorentz force is still large because the

speed of the betatron oscillations remains close to vcr as

shown in Fig. 2(c), the fast oscillations of the mismatch

phase h result in the vanishing of the time-averaged inverse

ICL acceleration. This causes electron’s overall deceleration

by the longitudinal force �eEk as shown in Fig. 2(a) for

t> tmax.

Note that the phase velocity vph of the laser wave propa-

gating in the ion channel is slightly higher than the speed

of light c despite the low density of the ambient plasma (xp

� xL) and still a lower plasma density inside the channel.

Therefore, at least some deviations from the idealized accel-

eration scaling given by Eq. (7) due to finite dvph¼ vph – c is

expected. The super-luminal effects are negligible as long as

dvph � c� hvxi and Eq. (8) holds if ðEk=E0Þ2 � a2
l dvph=c

for the l’th harmonic acceleration. In the opposite limit,

maintaining the betatron resonance ��xdðpx;uÞ þ lxbðpxÞ
� 0 imposes a slightly modified relationship between

transverse energy and longitudinal momentum

I ¼ l
ffiffiffiffiffiffiffi
2~px

p
xp=xL � 3dvph~px=c

I ¼ l
xp

xL

ffiffiffiffiffiffiffi
2~px

p
� 3dvph~px=c: (10)

A modified estimate for the maximum electron energy can

be obtained from the condition dI=d~px ¼ 0

pðlÞx;max �
l2

18

xp

xL

� �2 1

ðdvph=cÞ2
; (11)

pð5Þx;max > pð3Þx;max > pð1Þx;max: (12)

IV. PIC SIMULATIONS

The above simplified model assumes a constant in time

decelerating longitudinal field. In reality, such fields cannot

be maintained over long distances and time-changing longi-

tudinal fields must be employed. One of the most promising

approaches to producing such fields is a laser-wakefield

accelerator (LWFA) concept, where significant experimental

progress has been recently achieved.21–26 Below, we demon-

strate that constant-gradient inverse ICL acceleration can be

achieved inside a plasma bubble, where externally injected

electrons directly interact with the bubble-forming laser

pulse and with the decelerating longitudinal field in the front

portion of the bubble.

Two-dimensional in space and three-dimensional in

electron velocity simulations using a VLPL particle-in-cell

(PIC) code27 were carried out for the laser and plasma

parameters listed in the caption of Fig. 3. A cold electron

bunch injected with the initial momenta px0¼ 25mc and

py0¼ 0, the duration sb¼ 2kL/c, the radius rb¼ 5kL, and the

density nb¼ 4.3� 1015 cm�3 co-propagates with the laser

pump pulse as shown in Fig. 3(a). The front of the bunch ini-

tially coincides with the peak of the laser pulse, so that the

beam is positioned in the region where the combined effect

of the plasma wakefield and of the laser’s ponderomotive

force is to decelerate the injected electrons. Although the

characteristics of the laser pulse and its bubble evolve [see

Figs. 3(a) and 3(b) for comparison], the majority of the

injected electrons experience a decelerating wakefield

throughout the simulation’s duration of t¼ 700k/c.

The energy gains from the longitudinal decelerating

field, Ax ¼ �
Ð

eExvxdt, and from the laser transverse electric

field, Ay ¼ �
Ð

eEy 	 vydt, were estimated9,15 by extracting

Ex,y from the PIC simulations and integrating it for each

injected electron over a distance of ct � 700kl¼ 0.56 mm.

The results shown in Fig. 3(c) clearly indicate that those

electrons that have lost energy to the decelerating field (Ax

< 0) have gained energy from the laser (Ay > 0), and that Ay

� –2Ax for the highest energy electrons as predicted by the

analytic theory. For example, those electrons that have

gained Ay � 750mc2 from the inverse ICL mechanism have

lost Ax � 350mc2 to the decelerating electric field, thereby

gaining over 200 MeV in energy.

The high-energy electrons roughly correspond to the

blue- and red-coded test particles in Fig. 1(b), with some of

the electrons undergoing a transition from l¼ 1 to l¼ 3 reso-

nance during the propagation. Their physical location inside

the bubble at x – ct � 70kL can be identified in Fig. 3(b) by

their large betatron amplitude, and in Fig. 3(d) by their large

total energy. On the other hand, the low-energy electrons

FIG. 2. The dynamics of the representative accelerated electrons from the

three groups in Fig. 1 corresponding to the first (blue), third (red), and fifth

(black) sub-harmonics of the Doppler-shifted laser frequency xD resonantly

interacting with electrons’ betatron motion in an ion channel: (a) the normal-

ized longitudinal momentum px/mc and (b) transverse energy e?. (c)

Betatron velocity amplitude v* and (d) phase mismatch h of the test particle

from the first-harmonic resonance group. Constant-gradient acceleration

stops when sin h ¼ �1 and v*¼ vcr [dashed line in (c)]. Parameters: same as

in Fig. 1; kL¼ 0.8 lm.
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roughly corresponding to the green-coded test particles in

Fig. 1(b) do not directly interact with the laser pulse. Instead,

driven by the decelerating wakefield, they initially slip to the

back of the bubble at x – ct � 50kL, where the wakefield

changes sign, and subsequently gain a small amount of

energy directly from the wake. Since no energy gain from

the inverse ICL mechanism takes place for these electrons,

their betatron amplitude is strongly reduced as can be

observed in Fig. 3(b). Their physical location inside of the

bubble is at x – ct � 55kL. As seen from Fig. 3(e), the

doubled-peaked spectrum reflects the separation into low-

and high-energy electrons. The electrons resonantly interact-

ing with the laser pulse have large transverse and longitudi-

nal momenta, see Fig. 3(f).

V. CONCLUSION

In conclusion, we have proposed a novel approach to

constant-gradient far-field particle acceleration: an inverse ion

channel laser combined with longitudinal deceleration. The

combination of large transverse momentum and large total

energy makes such accelerators promising for developing com-

pact radiation sources. Technological advances in synchroniz-

ing electron bunches and laser pulses ensure that the suggested

scheme of injecting electrons into a decelerating phase of a

plasma bubble will be experimentally realized. Future work

will explore the possibility of extending the range of acceler-

ated energies by adiabatically varying plasma parameters.
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APPENDIX A: ACCELERATION BY ELLIPTICALLY
POLARIZED LASER WAVE

Similar to the linear polarized wave, an elliptically

polarized laser beam also provides constant-gradient direct

laser acceleration of electrons in an ion channel whenever an

additional decelerating longitudinal electric field is intro-

duced. Under the assumption that the laser wave is planar

and luminal E
ðLÞ
y ¼ E1 cos /; EðLÞz ¼ E2 sin / and BðLÞz ¼ E

ðLÞ
y

and B
ðLÞ
y ¼ �EðLÞz , where /¼xL(x/c – t), the equations of

motion of relativistic electrons now take the following form:

d

dt
c

dx

dt

� �
¼ � e

m
Ek �

e

m

vy

c
E1 cos uþ vz

c
E2 sin u

� �
;

(A1)

d

dt
c

dy

dt

� �
¼ �

x2
py

2
þ eE1

m

vx

c
� 1

� �
cos u; (A2)

d

dt
c

dz

dt

� �
¼ �

x2
pz

2
þ eE2

m

vx

c
� 1

� �
sin u: (A3)

We investigate the interaction of test particles with the

elliptically polarized wave considering the case when the

ratio between the two orthogonal components of the electric

field is equal to 3 (E1/E2¼ 3). The wave intensity, the decel-

erating electric field and all other parameters are the same as

in the case shown in Fig. 1 in Sec. II.

The integration of Eqs. (A1)–(A3) shows that initially

homogeneously seeded phase space undergoes strong frag-

mentation [see Figs. 4(a) and 4(b) for electron phase

spaces color-coded in accordance with their final change

of the longitudinal momentum] in the same manner as in

the case of the linear polarized laser wave shown in Fig. 1.

With the exception of green-colored particles that gain

negative momentum px < 0 from the decelerating electric

field, all other electrons gain transverse energy e? and

positive longitudinal momentum px> 0 via the DLA

mechanism.

In contrast to the linear polarization case, where the

electrons were moving mostly in the (x-y) plane, they now

move along more complex three-dimensional trajectories.

FIG. 3. PIC simulations of inverse ICL acceleration of electrons injected

into the decelerating phase of a plasma bubble in a LWFA. Plasma density

(color-coded), externally injected electron beam (red dots), and laser inten-

sity contour (white) at (a) ct¼ 120kL and (b) ct¼ 700kL. (c) Electron energy

gains from the longitudinal (Ax) and transverse (Ay) electric fields color

coded by the relativistic factor c, (d) the (x – ct, c) phase space, (e) the

energy spectrum and (f) the (px, py) phase space of injected electrons at

ct¼ 700kL. Plasma density n¼ 4.3� 1018 cm�3 and laser parameters: wave-

length kL¼ 0.8 lm, intensity I¼ 7.7� 1019 W/cm2, pulse duration s¼ 35fs,

and spot size w0¼ 12 lm. Simulation parameters: numerical grid cell size

Dx � D y¼ kL/50 � kL/5, four macroparticles per cell.

083101-5 Khudik et al. Phys. Plasmas 25, 083101 (2018)



Specifically, the electrons gyrate in the (y-z) plane while

propagating in the longitudinal (x-) direction. Our numeri-

cal simulations indicate that the exact nature of the elec-

tron’s gyration depends on the nature of the harmonic

order l of the betatron resonance. Here, as in Sec. III, we

assume that D�xD ¼ lxb, where D�xD is the time-averaged

Doppler shifted laser frequency and xb is the betatron

frequency.

For example, we find that an electron’s trajectory is

almost circular in the (y, z) plane if the laser wave is reso-

nant with the first (l¼ 1) harmonic of the betatron motion.

An example of such trajectory is shown in Fig. 4(c). It is

noteworthy that the circular nature of the electron’s gyra-

tion is preserved, despite the strong ellipticity of the laser

pulse. On the other hand, the trajectory can become highly

elliptical when the laser wave is resonant with the third

(l¼ 3) harmonic of the betatron motion. An example of

such a trajectory, which is strongly elongated in the z-direc-

tion with the axis ratio �9, is shown in Fig. 4(d). Note that

this elongation takes place despite the fact that the laser’s

polarization ellipse is elongated in the y-direction. The

ellipses are squeezed even more for the black-colored

(l¼ 5) particles.

Note that in the case of circular polarized laser wave

(E1/E2¼ 1), the equation of motion (A1)–(A3) can solve ana-

lytically at l¼ 1. Electrons move along helical trajectories

advancing forward in the x-direction with almost the speed

of light and gain maximum energy ~pmax / ð
xp

xL
Þ2ðE1

Ek
Þ4:

APPENDIX B: SIMILARITY WITH THE MOTION OF
PENDULUM

Averaged equations of motion do not depend on time

explicitly

_~px ¼ �xLak � alxLa0ð2I=~pxÞ1=2
sin hl; (B1)

_h ¼ �xLðI=2~pxÞ þ lxp=ð2~pxÞ1=2; (B2)

_I ¼ akxLðI=2~pxÞ; (B3)

where I � ðI0 � akuÞ. It is convenient to use the transverse

energy I as an independent variable. Dividing Eqs. (B1) and

(B2) by Eq. (B3), we obtain for l¼ 1

akI

2~px

d~px

dI
¼ �ak � a1a0

2I

~px

� �1=2

sin h; (B4)

�ak
dh
dI
¼ 1� xp

xL

ffiffiffiffiffiffiffi
2~px

p
I

: (B5)

During steady resonant acceleration akdh=dI � 1 and in the

zeroth approximation, we obtain from Eqs. (B5) and (B4)

~pr ¼
1

2

xL
2

x2
p

I2; (B6)

sin hr ¼ �
akI

1=2

a1a0ðxp=xLÞ
: (B7)

To analyze the solution of Eq. (B1)–(B3) beyond the point

where formally jsin hrj becomes greater than 1, we consider

the next approximation by presenting ~px ¼ ~pr þ d~px.

Substitution of this expansion into Eqs. (B4) and (B5) yields

akI

2~pr

dd~px

dI
¼ �2ak � T sin h
� �

1� 1

2

d~px

~pr

� �
; (B8)

�ak
dh
dI
¼ � 1

2

d~px

~pr

; (B9)

where T � 2a1a0ðxp=xLÞI�1=2. Since the expression into

square brackets in the r.h.s. of Eq. (B8) is small near the

zeroth approximation, we can replace the factor ð1� d~px=~prÞ
by 1. Then, combining Eqs. (B8) and (B9), we obtain

a2
k

1

I

d

dI
I3 1

I

dh
dI

� �
¼ �2ak � T sin h: (B10)

Introducing new “time” ~t by formula: IdI ¼ ðxp=xLÞ2d~pr

¼ akðxp=xLÞ2xLd~t, we can transform Eq. (B10) into the form

x2
L

x4
p

d

d~t
I3 dh

d~t
¼ �2ak � T sin h: (B11)

Since the difference between ~t and t is small, we can return

to regular time t and obtain Eq. (9).
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