
Spontaneous emergence of non-planar electron orbits during direct laser
acceleration by a linearly polarized laser pulse

A. V. Arefiev,1 V. N. Khudik,1 A. P. L. Robinson,2 G. Shvets,1 and L. Willingale3

1Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712, USA
2Central Laser Facility, STFC Rutherford-Appleton Laboratory, Didcot OX11 0QX, United Kingdom
3University of Michigan, 2200 Bonisteel Boulevard, Ann Arbor, Michigan 48109, USA

(Received 19 October 2015; accepted 2 February 2016; published online 16 February 2016)

An electron irradiated by a linearly polarized relativistic intensity laser pulse in a cylindrical plasma

channel can gain significant energy from the pulse. The laser electric and magnetic fields drive

electron oscillations in a plane making it natural to expect the electron trajectory to be flat. We show

that strong modulations of the relativistic c-factor associated with the energy enhancement cause the

free oscillations perpendicular to the plane of the driven motion to become unstable. As a

consequence, out of plane displacements grow to become comparable to the amplitude of the driven

oscillations and the electron trajectory becomes essentially three-dimensional, even if at an early

stage of the acceleration it was flat. The development of the instability profoundly affects the x-ray

emission, causing considerable divergence of the radiation perpendicular to the plane of the driven

oscillations, while also reducing the overall emitted energy. VC 2016 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4942036]

I. INTRODUCTION

Generation of energetic electrons is a key feature of

ultra-intense laser-plasma interactions and it has been suc-

cessfully employed in a variety of applications, including

radiation1,2 and particle sources.3–5 The laser-plasma interac-

tion and thus the mechanism responsible for electron acceler-

ation strongly depend on the duration of the laser pulse and

the plasma density.6–9 In the case of an underdense plasma,

the laser pulse can propagate through the plasma and its

propagation is typically accompanied by cavitation of the

electron density.10–13

In this paper, we focus on the regime where the laser

pulse is sufficiently long to establish a slowly evolving chan-

nel.14 This implies that the duration of the laser pulse signifi-

cantly exceeds the period of plasma oscillations. This regime

can naturally arise due to target ablation during the main

pulse or during the pre-pulse even if the initial target density

is over-critical. The channel produced by expelling some of

the electrons generates a transverse quasi-static electric field.

It has been shown that the presence of such a field can facili-

tate the electron energy gain directly from the laser, making

it possible to generate copious electrons with energies

exceeding the ponderomotive potential.7,10,11,15 The energy

enhancement in combination with the strong acceleration

experienced by the electron in the channel can also be bene-

ficial for x-ray emission, as has been demonstrated in experi-

ments with gas jets.2

Both the relevance of the discussed regime to a range of

applications and its potential to generate energetic electrons

and to boost the x-ray emission have renewed interest in

exploring mechanisms of electron acceleration in plasma

channels.15–19 When analyzing the dynamics of electrons

accelerated by a linearly polarized laser pulse inside a chan-

nel, i.e., the so-called direct laser acceleration regime, it

might appear reasonable to treat their trajectories as flat.

Indeed, the only oscillating electric field transverse to the

axis of the channel is the laser electric field. For an electron

starting its motion exactly on the axis of the channel, the

laser electric field would drive strong transverse oscillations,

while the Lorentz force would cause longitudinal motion,

thus producing a flat electron trajectory.

In this paper, we show that such flat electron trajectories

can be inherently unstable with respect to small transverse

displacements perpendicular to the plane of the driven

motion. The cause of the instability is the coupling through

the relativistic c-factor of the driven and free transverse

oscillations in a cylindrical channel. The oscillations driven

by the laser induce strong modulations of the relativistic c-

factor. As a result, the frequency of the free oscillations is

also modulated, which makes it possible for these oscilla-

tions to become parametrically unstable under appropriate

conditions. We show that such conditions are met after the

relativistic c-factor or the electron energy associated with the

driven motion becomes significantly enhanced. The energy

enhancement that takes place in an ion channel due to the

presence of the static electric field7 has a well-pronounced

threshold determined by the wave amplitude and the ion den-

sity in the channel.15,20 We have determined that even small

off-axis displacements perpendicular to the plane of the

driven motion quickly grow above this threshold. Therefore,

considerable electron energy enhancement in a cylindrical

channel necessarily leads to a fully three-dimensional (3D)

electron trajectory.

Presented here analysis bridges the gap in understanding

of electron dynamics in cylindrical channels. Previously, the

parametric instability and its impact on electron acceleration

have been studied using only slab-like two-dimensional ion

channels.15,20 The main advantage of the two-dimensional

setup is that it allows to spatially decouple the oscillations

driven by the laser and the oscillations caused by the
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electrostatic field of the channel. This aspect makes the prob-

lem analytically tractable and thus greatly facilitates the

analysis of the electron acceleration mechanism. On the

other hand, the results obtained for the slab-like channels

cannot be directly applied to the more relevant case of cylin-

drical channels. In a cylindrical channel, the influence of the

laser electric field and the field of the channel cannot, in

principle, be decoupled. Our analysis shows that non-planar

trajectories arise due to this coupling, with the electron

energy enhancement serving as the trigger.

We also apply the newly gained insight into the electron

dynamics to analyze the x-ray emission by the accelerated

electrons. The development of the three-dimensional motion

in the channel causes a considerable divergence of the radia-

tion perpendicular to the plane of the driven oscillations,

while, at the same time, it reduces the overall emitted

energy. Therefore, the three-dimensional aspect of the elec-

tron motion must be taken into account when analyzing the

x-ray generation during the direct laser acceleration.

II. BASIC MODEL

In order to examine the effect of the parametric instabil-

ity, we consider just a single electron irradiated by a plane

electromagnetic wave in a fully evacuated cylindrical ion

channel, as shown in Fig. 1. An important difference in this

setup from those used in Refs. 15 and 20 is the configuration

of the static electric field. The advantage of the single elec-

tron model is that the fields acting on the electron can be

treated as given.

The incoming wave irradiating the electron is a plane

linearly polarized electromagnetic wave propagating along

the channel with a phase velocity vph equal to the speed of

light. The main effect investigated in this work is not very

sensitive to the value of vph, so we set vph ¼ c only to sim-

plify the analysis. It is convenient to use a Cartesian system

of coordinates (x, y, z), with the z-axis directed along the axis

of the channel and in the direction of the wave propagation.

Without any loss of generality, we set the wave electric and

magnetic fields to be directed along the y and x-axes, respec-

tively. To describe the wave propagation, we introduce a

normalized vector potential that has only a y-component. Its

amplitude a is only a function of a single dimensionless

phase variable

n ¼ xðt� z=cÞ; (1)

where x is the frequency of the wave and c is the speed of

light. The electric and magnetic fields of the wave are then

given by

Ey ¼ �
mexc

jej
da

dn
; (2)

Bx ¼ �Ey; (3)

where e and me are the electron charge and mass.

The electric field of the channel has both x and y compo-

nents. Assuming for simplicity that the channel is a uniform

positively charged cylinder that consists of immobile singly

charged ions of density n0, we find that

Ex ¼ 2pn0jejx ¼ mex
2
p0x=2jej; (4)

Ey ¼ 2pn0jejy ¼ mex
2
p0y=2jej; (5)

where xp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=me

p
is the plasma frequency.

The electron dynamics obeys the following general

equations of motion:

dp

dt
¼ �jejE� jej

cmec
p� B½ �; (6)

dr

dt
¼ p

cme
; (7)

where p is the electron momentum, r is the electron displace-

ment from the axis of the channel, and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=mec2

p
(8)

is the relativistic factor. The fields E and B are superposi-

tions of the fields of the wave [Eqs. (2) and (3)] and the fields

of the channel [Eqs. (4) and (5)].

It is important to point out that the amplitude of the

transverse oscillations has a hard upper limit regardless of

the wave profile. One can verify that Eqs. (6) and (7) have an

integral of motion

C ¼ c� pz

mec
þ

x2
p0

4c2
x2 þ y2
� �

¼ const; (9)

which relates the amplitude of the oscillations across the

channel and the electron c-factor. The value of C is deter-

mined by the initial conditions, so that we have C¼ 1 for an

on-axis electron that is initially at rest. We find from Eq. (9)

that the amplitude of the electron oscillations cannot exceed

rmax ¼
k
p

x
xp0

; (10)

for C¼ 1. The amplitude of the oscillations approaches rmax

as pz=mec!1 and c� pz=mec! 0. It follows from Eq.

(9) that the constant C is also close to unity for an initially

displaced electron if the displacement is much less than

2c=xp0. Therefore, rmax serves as an upper limit for the trans-

verse oscillations in this case as well.

In what follows, we consider an incoming wave whose

amplitude monotonically increases from zero to its maximum

FIG. 1. Cylindrical setup: a single electron is irradiated by a plane electro-

magnetic wave in a cylindrical ion channel. The laser electric field is polar-

ized in the plotted (y, z)-plane.
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value of a0 over many wave periods and then remains con-

stant. The specific shape used to numerically solve the equa-

tions of motion is

aðnÞ ¼ a0 exp½�ðn� n0Þ2=2r2� sinðnÞ; for n < n0;
a0 sinðnÞ; for n � n0;

�

(11)

where the parameters n0 ¼ 50 and r¼ 20 determine the

ramp-up of the amplitude.

Our objective is to determine the key features of elec-

tron dynamics in the channel and the sensitivity of electron

trajectories to displacements off the axis of the channel. The

electric and magnetic fields of the wave with the chosen

polarization drive electron oscillations in the (y, z)-plane.

Therefore, the displacements of particular interest are the

displacements along the x-axis and out of the plane of

the driven oscillations. In what follows, we consider an elec-

tron that is initially at rest and we distinguish two cases of

interest. In the first case, the electron is located exactly on

the axis of the channel prior to the arrival of the wave,

so that x ¼ y ¼ z ¼ 0 at t¼ 0. In the second case, the elec-

tron is initially displaced along the x-axis, so that x ¼ Dx and

y ¼ z ¼ 0 at t¼ 0.

III. DRIVEN OSCILLATIONS IN THE (y,z)-PLANE

In this section, we consider the first case of interest out-

lined in the Section II: the electron is initially at rest and it is

located on the axis of the channel. This electron experiences

no force directed along the x-axis and, therefore, its trajec-

tory will remain flat as it performs driven oscillations in the

(y, z)-plane shown in Fig. 1.

We substitute the expressions for the fields of the laser

[Eqs. (2) and (3)] and the fields of the channel [Eqs. (4) and

(5)] into Eqs. (6) and (7) to obtain the following set of equa-

tions for the electron motion in the (y, z)-plane:

dpy

dt
¼ � 1

2
mex

2
p0yþ mexc 1� pz

cmec

� �
da

dn
; (12)

dpz

dt
¼ mexc

py

cmec

da

dn
; (13)

dy

dt
¼ py

cme
; (14)

dn
dt
¼ x 1� pz

cmec

� �
: (15)

Note that the last equation is equivalent to the equation

dz=dt ¼ pz=cme. We use the equation for n instead, since the

vector potential a can be expressed as just a function of n.

Driven electron oscillations across the channel were first consid-

ered in Ref. 7 and then later investigated in more detail in Refs.

15 and 20. In this section, we follow the analysis of Ref. 20.

The electron motion in the channel is influenced by two

parameters: a0, representing the wave amplitude, and xp0=x,

representing the ion density in the channel. We have per-

formed a parameter scan, solving Eqs. (12)–(15) numerically

for a range of values of a0 and xp0=x and the wave specified

by Eq. (11). The maximum c-factor, denoted by cmax, that

the electron achieves moving through the channel for differ-

ent sets of parameters a0 and xp0=x is shown in Fig. 2. On

the other hand, the maximum c-factor that the electron can

reach moving in the wave without the additional influence of

the field generated by the ions is

cvac ¼ 1þ a2
0=2: (16)

Fig. 2 shows the enhancement of cmax relative to cvac.

As evident from this figure, there is a well pronounced

energy enhancement threshold. Below the threshold, the

maximum electron c-factor is comparable to cvac, whereas,

above the threshold, the maximum c-factor significantly

exceeds cvac. The threshold is determined by a single dimen-

sionless combination a0xp0=x.20 The dashed curve in Fig. 2

that follows the threshold corresponds to a0xp0=x ¼ 0:972.

It must be noted that the exact location of the threshold

depends on the initial displacement and momentum of the

electron20 and can also be influenced by the ramp-up of the

wave amplitude.

Figure 3 shows profiles of the electron c-factor below

and above the threshold for parameters marked with open

circles in Fig. 2. The c-factor is given as a function of the

dimensionless proper time s defined as

ds
dt
¼ x

c
: (17)

This representation is convenient for the analysis that fol-

lows in Section IV. In both cases, the wave amplitude is the

same, a0 ¼ 6, so the threshold is encountered by increasing

the ion density. The upper panel in Fig. 3 corresponds to

xp0=x ¼ 0:05 (left circle in Fig. 2). This value is well below

the threshold for a0 ¼ 6 and, therefore, cmax is roughly

the same as cvac. Moreover, cðsÞ has a well defined period.

FIG. 2. Maximum c-factor (cmax) achieved by an electron irradiated by a

plane electromagnetic wave with maximum amplitude a0 in a cylindrical

channel with ion density n0=ncrit ¼ x2
p0=x

2. The relativistic factor c is nor-

malized to cvac ¼ 1þ a2
0=2. Initially, the electron is at rest on the axis of the

channel.
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The lower panel in Fig. 3 corresponds to xp0=x ¼ 0:163

(right circle in Fig. 2) that is slightly above the threshold.

Not only there is a dramatic increase of cmax but there is also

a significant change in the profile of cðsÞ. The cðsÞ now has

sharp semi-periodic spikes in addition to the frequent oscilla-

tions that are also seen below the threshold (upper panel of

Fig. 3). Even though the profiles of cðsÞ in Fig. 3 are only a

segment of the time interval (0 � s � 600) used to generate

the parameter scan shown in Fig. 2, they capture the key

changes in the evolution of the relativistic c-factor.

IV. FREE OSCILLATIONS ALONG THE x-AXIS

In this section, we consider the second case of interest,

with the electron being initially slightly displaced along the

x-axis. The displacement initiates electron motion in the

x-direction, since the restoring force along the x-axis no lon-

ger vanishes.

To take into account the motion along the x-axis, Eqs.

(12)–(15) should simply be supplemented by the following

two equations that are x-components of Eqs. (6) and (7):

dpx

dt
¼ � 1

2
mex

2
p0x; (18)

dx

dt
¼ px

cme
: (19)

We combine Eqs. (18) and (19) into a single equation

d2x

ds2
þ X2x ¼ 0; (20)

which resembles that of an oscillator with a natural

frequency

X �
ffiffiffi
c
2

r
xp0

x
: (21)

Here, s is the dimensionless proper time defined by Eq. (17).

Electron oscillations described by Eq. (20) and the

driven motion in the (y, z)-plane are coupled only via the rel-

ativistic c-factor. This means that the driven motion

described in Sec. III remains essentially unaltered for as long

as the amplitude of the oscillations, and the momentum asso-

ciated with them, remains small. In order to find out whether

the oscillations can grow, we analyze Eq. (20) assuming that

the c-factor is determined only by the driven motion.

The amplitude of the oscillations can only grow due to

modulations of the natural frequency X. In an axially uni-

form channel that we are considering, X is modulated by the

c-factor. The modulations of c induced by the driven electron

motion in the (y, z)-plane are shown in Fig. 3 for ion den-

sities below and above the energy enhancement threshold.

Below the threshold, cðsÞ consists of periodic oscillations

between c � 1 and cmax. We will refer to one such oscillation

in this regime as a single modulation. Above the threshold,

the profile of cðsÞ is rather different, but one can still distin-

guish a semi-periodic pattern: there are tall spikes with a

comparable delay between them. It is then appropriate in this

regime to refer to one such spike as a single modulation.

To gain insight into electron dynamics caused by the

modulations of c, we take just a single modulation and

assume that it is periodically repeated. We use s	 and c	 to

denote the period of the modulations and their amplitude.

The cðsÞ from the upper panel of Fig. 3 is represented by one

of the peaks shown in Fig. 4 by a green curve, with c	 
 19

and s	 
 3:15. The cðsÞ from the lower panel of Fig. 3 is rep-

resented by the third spike shown in Fig. 4 by a blue curve,

with c	 
 177 and s	 
 19:2.

Now that we have approximated the relativistic c-factor

by a periodic function

cðsÞ ¼ c	f ðs=s	Þ: (22)

Eq. (20) can be rewritten as

d2x

ds2
þ X2

0f sð Þx ¼ 0; (23)

where

s � s=s	; (24)

X0 �
ffiffiffiffiffi
c	
2

r
xp0

x
s	; (25)

FIG. 3. Electron c-factor for a0 ¼ 6 and ion densities below (upper panel)

and above (lower panel) the threshold shown in Fig. 2. The densities corre-

spond to xp0=x ¼ 0:05 (upper panel) and xp0=x ¼ 0:163 (lower panel).

The parameters corresponding to the upper and lower panels are marked

with empty circles in Fig. 2. The c-factor is given as a function of the proper

time defined by Eq. (17). The dashed line marks cvac, which is the maximum

value of c in the absence of the channel fields.
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and f is a normalized periodic function that represents the

structure of a specific modulation that is chosen to approxi-

mate c. By definition, the period of f is equal to unity and

0 < f � 1. General properties of Eq. (23) are well-known

and appear in many physics problems. The feature that is of

the key importance here is that Eq. (23) can have exponen-

tially growing solutions for some bands of frequencies X0.

Treating X0 as a free parameter, we have numerically

calculated the exponential growth rate � for both modula-

tions from Fig. 4 over a broad range of X0 values. The corre-

sponding curves are shown in Fig. 5 versus the average

frequency

hX0i �
1

s	

ðs	

0

X0f s=s	ð Þds

� 	1=2

; (26)

to emphasize their similarity. In both cases, there are alter-

nating stable and unstable frequency bands. In the unstable

bands, Eq. (23) has a solution whose amplitude increases

exponentially as expð�sÞ with every modulation. The lowest

unstable band for both curves starts roughly at hX0i 
 2:5.

The apparent similarity of the growth rate curves indi-

cates that the stability of the free electron oscillations along

the x-axis is not very sensitive to the exact shape of the nor-

malized modulation. The main difference between the modu-

lations of the relativistic c-factor below and above the

energy enhancement threshold is the respective values of the

average frequency hX0i. Indeed, taking into account that the

modulations shown in Fig. 4 correspond to xp0=x ¼ 0:05

and xp0=x ¼ 0:163, we find that the average frequency

above the threshold, hX0i 
 16:3, significantly exceeds the

average frequency below the threshold, hX0i 
 0:35. The av-

erage frequency for the modulations below the threshold

(marked with a square) is well below the lowest unstable

band in Fig. 5. Therefore, electron oscillations along the x-

axis are stable in this regime and small initial displacements

do not grow with time. In contrast with that, the average fre-

quency for the modulations above the threshold (marked

with a circle) is in the fifth unstable band. The corresponding

exponential growth rate of the oscillations is � 
 1:19=s	.
The key conclusion from the presented analysis is that

the change in the modulations of the c-factor that accompa-

nies the significant energy enhancement shown in Fig. 3

makes free electron oscillations along the x-axis unstable.

The main changes that occur are the significant increase of

the period and amplitude of the modulations.

It is important to emphasize that we have assumed strict

periodicity when analyzing the modulations shown in Fig. 3.

This assumption holds well if there is no significant enhance-

ment of the c-factor. However, as evident from Fig. 3, the pe-

riod and amplitude of the modulations are gradually changing

in the regime where the c-factor is enhanced. Therefore, the

unstable frequency bands and the average frequency hX0i,
shown with a circle in Fig. 5, are not fixed in this case. On

one hand, this means that if initially hX0i happens to be

between the unstable bands, the subsequent change in the

modulations will likely make the oscillations unstable. On the

other hand, this raises the question of whether the lack of

exact periodicity would stem the growth of the transverse

oscillations. We address this in Section V by carrying out fully

self-consistent calculations of electron dynamics in the cylin-

drical channel.

V. 3D ELECTRON MOTION

In this section, we demonstrate that significant oscilla-

tions perpendicular to the plane of the driven oscillations can

indeed develop during electron acceleration in a cylindrical

channel. To find the three-dimensional electron trajectories,

we numerically solve the full system of equations, Eqs. (6)

and (7), with the wave ramp-up specified by Eq. (11).

For our first example, we take the same channel density

(right circle in Fig. 2) that was used to generate the c-factor

modulations shown in the lower panel of Fig. 3. Specifically,

the ion density is set at n0=ncrit 
 2:66� 10�2, which corre-

sponds to xp0=x ¼ 0:163. We now compare our two cases:

an electron starting its motion on the axis of the channel and

an electron that is initially displaced by Dx ¼ 0:1k. In both

cases, the electron is initially at rest and the wave amplitude

is a0 ¼ 6.

FIG. 4. Normalized modulations of the relativistic c-factor at ion densities

above (blue curve) and below (green curve) the energy enhancement thresh-

old. Here, s	 is the period and c	 is the amplitude of the modulations. Their

values are different in each case (see Sec. IV for more details).

FIG. 5. Exponential growth rate � of the free oscillations along the x-axis for

the two modulations shown in Fig. 4. Here, s	 is the period of the modulations

and hX0i is the average frequency of the oscillations defined by Eq. (26).

023111-5 Arefiev et al. Phys. Plasmas 23, 023111 (2016)



The electron trajectories calculated for the two cases are

shown in Fig. 6. The trajectory of the electron that starts its

motion on the axis (upper panel) remains flat throughout the

acceleration process. Its motion consists only of the driven

oscillations in the (y, z)-plane. This is exactly the case that

was considered in Sec. III. The time evolution of the c-factor

is shown in Fig. 3. In this case, the c-factor is significantly

enhanced and there are strong modulations associated with

the enhancement. In Sec. IV, we showed that these modula-

tions can make flat trajectories unstable with respect to small

displacements out of the trajectory plane.

The trajectory of the electron with a small initially dis-

placement (lower panel in Fig. 6) confirms the instability, as

the electron develops appreciable oscillations along the

x-axis. Early in the acceleration process, the trajectories with

and without the displacement appear visually identical.

However, as the electron continues its motion along the

channel, the modulations of the c-factor induced by the

driven oscillations in the (y, z)-plane cause the small oscilla-

tions along the x-axis to grow. A projection of the electron

trajectory onto the cross-section of the channel, i.e., onto the

(x, y)-plane, is also shown in the lower panel of Fig. 6.

Evidently, the amplitude of the free oscillations reaches

roughly half of the amplitude of the driven oscillations. This

is a clear manifestation of the instability triggered by the

energy enhancement.

The development of the oscillations along the x-axis that

makes the trajectory three-dimensional depends on the initial

displacement, the ramp-up of the wave amplitude, and the

ion density in the channel. Figure 7 illustrates an electron tra-

jectory in a channel whose ion density is four times higher

than that used in the previous example, n0=ncrit 

1:06� 10�1 (xp0=x ¼ 0:326). All the other parameters,

including the initial electron displacement, are exactly the

same as those used to generate the trajectory in the lower

panel of Fig. 6. The electron trajectory shown in Fig. 7

develops appreciable oscillations along the x-axis a lot

sooner than in Fig. 6 and their amplitude becomes essentially

equal to the amplitude of the driven oscillations along the

y-axis.

To determine how the maximum amplitude of the elec-

tron oscillations across the channel depends on the wave am-

plitude and the ion density, we have performed a parameter

scan for an initially displaced electron. The results of the

scan are given in Fig. 8, where we separately show maxi-

mum amplitudes of the free and driven oscillations (jxjmax

and jyjmax, respectively). The amplitudes are normalized to

the maximum amplitude of the transverse oscillations rmax

derived in Sec. II and given by Eq. (10).

Unsurprisingly, there is an enhancement of the driven

oscillations along the y-axis above the energy enhancement

threshold shown with a dashed curve in Fig. 8. The increase

of jyjmax manifests the energy increase of the driven oscilla-

tions, so the scan results shown in the lower panel of Fig. 8

would look identical if we were to consider an electron with-

out any initial displacement instead.

In stark contrast to this, an initial displacement out of

the plane of the driven motion dramatically changes the free

electron motion along the x-axis. The upper panel of Fig. 8

shows that there is a well-pronounced threshold for the

enhancement of the free oscillations. This threshold matches

the energy enhancement threshold (dashed line), because, as

discussed in Sec. IV, the energy enhancement triggers the

growth of electron oscillations along the x-axis. The ampli-

tude of the free oscillations grows until it becomes compara-

ble to rmax. It is important to point out that the energy

enhancement and the increase of the driven oscillations nec-

essarily take place first and only then free oscillations can be

amplified. The resulting non-planar motion is chaotic, so a

FIG. 6. Comparison of the electron trajectories with and without the initial

displacement (lower and upper panels). The wave electric field is polarized

in the (y, z)-plane (shown in light-blue). The electron in the lower panel is

initially displaced by Dx ¼ 0:1k off the axis of the channel. In both cases,

we set a0 ¼ 6 and xp0=x ¼ 0:163.

FIG. 7. Electron trajectory in a channel with xp0=x ¼ 0:326. The wave am-

plitude is a0 ¼ 6 and the initial displacement across the channel is

Dx ¼ 0:1k.
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different amount of time is required for jxjmax to approach

rmax for different a0 and xp0. This is the cause of the check-

ered pattern above the threshold in the upper panel of Fig. 8.

In this case, the electrons are tracked only for s � 600 and

jxjmax has not yet converged to rmax for all a0 and xp0 above

the threshold. The pattern becomes more uniform with

increased observation (tracking) time.

We conclude that, in general, the electron energy

enhancement is accompanied by a considerable enhancement

of the transverse oscillations across the channel, making the

electron trajectory considerably three-dimensional with the

maximum displacement given by rmax.

VI. SUMMARY AND DISCUSSION

The analysis presented in this paper bridges a gap in the

existing understanding of electron dynamics in cylindrical chan-

nels. We have shown that the threshold for the energy

enhancement matches the threshold for the onset of the paramet-

ric instability in the direction perpendicular to the plane of the

driven electron oscillation. As a result, the trajectories of elec-

trons with enhanced energies necessarily become non-planar.

It is worth noting that the energy enhancement takes

place first and the development of the parametric instability

occurs afterwards. Therefore, limiting the acceleration dis-

tance or the length of the channel could be a way to keep

electron trajectories flat if the three-dimensional motion is

undesirable. The onset of the instability can be further

delayed by increasing the wave amplitude a0. Even if the

amplification of a small transverse displacement takes the

same number of laser oscillations, the corresponding axial

distance travelled by the electron increases as a2
0. These con-

siderations might be important to the proposed schemes of

the direct laser acceleration of electrons from low density

targets by the next generation of high intensity lasers.21

The development of the three-dimensional electron

motion in the ion channel has strong implications for the

x-ray emission by significantly increasing the divergence of

the radiation. For example, the upper panel in Fig. 9 shows

FIG. 8. Maximum amplitudes of the free (upper panel) and driven (lower

panel) oscillations across the cylindrical channel. The amplitudes are nor-

malized to rmax given by Eq. (10). The initial transverse displacement is set

at Dx ¼ 2:7� 10�3a0x=xp0 in order to be much smaller than rmax and

jyjmax for all sets of parameters. The dashed curve in both panels marks the

energy enhancement threshold shown in Fig. 2.

FIG. 9. X-ray emission at frequency xR ¼ 3� 103x. Upper panel: emission

intensity as a function of the opening angles along the x and y-axes (wx and

wy) for the trajectory shown in Fig. 7. Lower panel: emission as a function

of the opening angle in the plane of the driven oscillations wy (and summed

over all wx) for the 3D trajectory from Fig. 7 and for a flat trajectory

obtained for the same parameters, but no initial displacement.
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the intensity of the x-ray emission as a function of the open-

ing angles along the x and y-axes (wx and wy) for the three-

dimensional trajectory from Fig. 7. The pattern, shown for

the x-rays with frequency xR ¼ 3� 103x, is rather generic.

It remains similarly widened in the direction of the free

oscillations (x-direction) for other frequencies and for the

total spectral emission. In contrast with that, the emission

pattern for an electron without any initial displacement along

the x-axis would appear as a line with a width that scales as

1=c, where c is the characteristic c-factor along the trajec-

tory. However, along the y-axis (that is, in the plane of the

driven oscillations), the width of the emission patterns for

the three-dimensional and flat trajectories are comparable, as

evident from the lower panel of Fig. 9 where the emission

was summed over all wx.

At high frequencies, the emission spectra are generically

looking exponentially decaying functions for planar and

non-planar trajectories. We find that the three-dimensional

electron motion tends to reduce the overall emitted energy in

a given frequency range. In the example shown in Fig. 9, the

energy is roughly halved when compared with the flat trajec-

tory with the same axial length. We find that the local curva-

ture of the electron trajectory tends to decrease due to the

extra dimension. As a result, the acceleration decreases and

the emission drops. The presented analysis indicates that the

important physics might be missing in two-dimensional parti-

cle-in-cell simulations that are often used to predict the x-ray

yield from plasma channels and hence three-dimensional sim-

ulations are likely necessary to correctly predict the x-ray

emission by the electrons in this regime.

It has recently been shown that electron injection into

the laser pulse can significantly lower the threshold for the

electron energy enhancement,22 while the superluminosity of

the wave induced by the channel can have a detrimental

effect of the electron energy gain.23 A comprehensive study

is therefore necessary to determine the interplay of these

aspects with the parametric instability. Nevertheless, the

main effect of the spontaneous emergence of non-planar

electron orbits during direct laser acceleration is triggered by

strong modulations of the c-factor and, because of that, it is

not sensitive to the value of the phase velocity of the laser

pulse.

In our model, we have neglected the slow ion motion

caused by their expansion. The expansion gradually reduces

the ion density in the channel and, as a result, the key param-

eter xp0 as well. However, the energy enhancement that trig-

gers the development of non-planar trajectories takes place

for a wide range of xp0 values above the threshold, as shown

in Fig. 2. This suggests that the development of non-planar

trajectories, which is the main effect, should be robust with

respect to ion expansion. The exact dynamics of the ion

expansion depends on the channel parameters, how the chan-

nel was created, and how it is maintained. Therefore, the

impact of the ion motion on the electrons should be eval-

uated in a fully self-consistent particle-in-cell simulation.

Finally, it should be pointed out that the direct laser

acceleration is also being considered as a mechanism for

boosting electron energies in the wakefield acceleration

scheme.24 In principle, transverse electric fields generated by

the bubble can have a destabilizing effect on the electron tra-

jectories that is similar to the one we have discussed for the

ion channels. It remains to be seen whether the parametric

instability, in fact, develops in the regimes favorable for the

x-ray emission.25 On the other hand, recent analytical and

simulation results show that axially modulated plasma wake-

fields can be used to trigger the parametric instability in a

controlled fashion, thus enhancing the betatron x-ray emis-

sion by the accelerated electrons.26 We have considered only

axially uniform plasma channels. However, corrugated

plasma channels with adjustable axial modulation periods

can be reliably generated by utilizing clusters and cluster

plasmas.27,28 This capability offers a possibility of control-

ling the electron motion by utilizing the mechanism dis-

cussed in this paper.

ACKNOWLEDGMENTS

This material was based upon work supported by the

U.S. Department of Energy [National Nuclear Security

Administration] under Award No. DE-NA0002723. A.V.A.

was also supported by AFOSR Contract No. FA9550-14-1-

0045, U.S. Department of Energy—National Nuclear

Security Administration Cooperative Agreement No. DE-

NA0002008, and U.S. Department of Energy Contract No.

DE-FG02-04ER54742. V.N.K. and G.S. were supported by

AFOSR Contract No. FA9550-14-1-0045 and U.S.

Department of Energy Contract Nos. DE-SC0007889 and

DE-SC0010622.

1H.-S. Park, D. M. Chambers, H.-K. Chung, R. J. Clarke, R. Eagleton, E.

Giraldez, T. Goldsack, R. Heathcote, N. Izumi, M. H. Key, J. A. King, J.

A. Koch, O. L. Landen, A. Nikroo, P. K. Patel, D. F. Price, B. A.

Remington, H. F. Robey, R. A. Snavely, D. A. Steinman, R. B. Stephens,

C. Stoeckl, M. Storm, M. Tabak, W. Theobald, R. P. J. Town, J. E.

Wickersham, and B. B. Zhang, Phys. Plasmas 13, 056309 (2006).
2S. Kneip, S. R. Nagel, C. Bellei, N. Bourgeois, A. E. Dangor, A. Gopal, R.

Heathcote, S. P. D. Mangles, J. R. Marques, A. Maksimchuk, P. M.

Nilson, K. Ta Phuoc, S. Reed, M. Tzoufras, F. S. Tsung, L. Willingale, W.

B. Mori, A. Rousse, K. Krushelnick, and Z. Najmudin, Phys. Rev. Lett.

100, 105006 (2008).
3I. Pomerantz, E. McCary, A. Meadows, A. Arefiev, A. Bernstein, C.

Chester, J. Cortez, M. Donovan, G. Dyer, E. Gaul, D. Hamilton, D. Kuk,

A. Lestrade, C. Wang, T. Ditmire, and B. Hegelich, Phys. Rev. Lett. 113,

184801 (2014).
4M. Schollmeier, A. B. Sefkow, M. Geissel, A. V. Arefiev, K. A. Flippo, S.

A. Gaillard, R. P. Johnson, M. W. Kimmel, D. T. Offermann, P. K.

Rambo, J. Schwarz, and T. Shimada, Phys. Plasmas 22, 043116 (2015).
5H. Chen, A. Link, Y. Sentoku, P. Audebert, F. Fiuza, A. Hazi, R. F.

Heeter, M. Hill, L. Hobbs, A. J. Kemp, G. E. Kemp, S. Kerr, D. D.

Meyerhofer, J. Myatt, S. R. Nagel, J. Park, R. Tommasini, and G. J.

Williams, Phys. Plasmas 22, 056705 (2015).
6S. C. Wilks, W. L. Kruer, M. Tabak, and A. B. Langdon, Phys. Rev. Lett.

69, 1383 (1992).
7A. Pukhov, Z.-M. Sheng, and J. Meyer-ter-Vehn, Phys. Plasmas 6, 2847

(1999).
8E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev. Mod. Phys. 81, 1229

(2009).
9A. J. Kemp and L. Divol, Phys. Rev. Lett. 109, 195005 (2012).

10C. Gahn, G. D. Tsakiris, A. Pukhov, J. Meyer-ter-Vehn, G. Pretzler, P.

Thirolf, D. Habs, and K. J. Witte, Phys. Rev. Lett. 83, 4772 (1999).
11S. P. D. Mangles, B. R. Walton, M. Tzoufras, Z. Najmudin, R. J. Clarke,

A. E. Dangor, R. G. Evans, S. Fritzler, A. Gopal, C. Hernandez-Gomez,

W. B. Mori, W. Rozmus, M. Tatarakis, A. G. R. Thomas, F. S. Tsung, M.

S. Wei, and K. Krushelnick, Phys. Rev. Lett. 94, 245001 (2005).
12Y. Sentoku, W. Kruer, M. Matsuoka, and A. Pukhov, Fusion Sci. Technol.

49, 278 (2006).

023111-8 Arefiev et al. Phys. Plasmas 23, 023111 (2016)



13L. Willingale, A. G. R. Thomas, P. M. Nilson, H. Chen, J. Cobble, R. S.

Craxton, A. Maksimchuk, P. A. Norreys, T. C. Sangster, R. H. H. Scott,

C. Stoeckl, C. Zulick, and K. Krushelnick, New J. Phys. 15, 025023

(2013).
14L. Willingale, P. M. Nilson, A. G. R. Thomas, J. Cobble, R. S. Craxton, A.

Maksimchuk, P. A. Norreys, T. C. Sangster, R. H. H. Scott, C. Stoeckl, C.

Zulick, and K. Krushelnick, Phys. Rev. Lett. 106, 105002 (2011).
15A. V. Arefiev, B. N. Breizman, M. Schollmeier, and V. N. Khudik, Phys.

Rev. Lett. 108, 145004 (2012).
16B. Liu, H. Y. Wang, J. Liu, L. B. Fu, Y. J. Xu, X. Q. Yan, and X. T. He,

Phys. Rev. Lett. 110, 045002 (2013).
17A. P. L. Robinson, A. V. Arefiev, and D. Neely, Phys. Rev. Lett. 111,

065002 (2013).
18A. G. Krygier, D. W. Schumacher, and R. R. Freeman, Phys. Plasmas 21,

023112 (2014).
19B. Liu, R. H. Hu, H. Y. Wang, D. Wu, J. Liu, C. E. Chen, J. Meyer-ter-

Vehn, X. Q. Yan, and X. T. He, Phys. Plasmas 22, 080704 (2015).

20A. V. Arefiev, V. N. Khudik, and M. Schollmeier, Phys. Plasmas 21,

033104 (2014).
21K. P. Singh, R. Arya, and A. K. Malik, Phys. Plasmas 22, 083105 (2015).
22A. V. Arefiev, A. P. L. Robinson, and V. N. Khudik, J. Plasma Phys. 81,

475810404 (2015).
23A. P. L. Robinson, A. V. Arefiev, and V. N. Khudik, Phys. Plasmas 22,

083114 (2015).
24X. Zhang, V. N. Khudik, and G. Shvets, Phys. Rev. Lett. 114, 184801 (2015).
25F. Albert, B. B. Pollock, J. L. Shaw, K. A. Marsh, J. E. Ralph, Y.-H. Chen,

D. Alessi, A. Pak, C. E. Clayton, S. H. Glenzer, and C. Joshi, Phys. Rev.

Lett. 111, 235004 (2013).
26J. P. Palastro, D. Kaganovich, and D. Gordon, Phys. Plasmas 22, 063111

(2015).
27B. D. Layer, A. York, T. M. Antonsen, S. Varma, Y.-H. Chen, Y. Leng,

and H. M. Milchberg, Phys. Rev. Lett. 99, 035001 (2013).
28B. D. Layer, A. G. York, S. Varma, Y.-H. Chen, and H. M. Milchberg,

Opt. Express 17, 4263 (2009).

023111-9 Arefiev et al. Phys. Plasmas 23, 023111 (2016)


