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We examine a regime in which a linearly polarized laser pulse with relativistic intensity irradiates

a sub-critical plasma for much longer than the characteristic electron response time. A steady-state

channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric

fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal elec-

tric field reduces the longitudinal dephasing between the electron and the wave, leading to an

enhancement of the electron energy gain from the pulse. The energy gain in this regime is ulti-

mately limited by the superluminosity of the wave fronts induced by the plasma in the channel.

The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to

remain anti-parallel to laser electric field and leading to a significant energy gain. The energy

enhancement is accompanied by the development of significant oscillations perpendicular to the

plane of the driven motion, making trajectories of energetic electrons three-dimensional. Proper

electron injection into the laser beam can further boost the electron energy gain. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4946024]

I. INTRODUCTION

The rapid development and improvement of ultra-intense

laser pulses have opened new areas of physics for fundamen-

tal research and have also enabled novel technological appli-

cations. Relativistically intense (I> 1018W/cm2) laser pulses

readily ionize matter converting it into a plasma. The interac-

tion with the plasma electrons is the primary channel for the

energy transfer from the laser pulse, providing the basis for a

wide range of phenomena and applications. Specifically, gen-

eration of copious relativistic electrons is the key to x-ray1,2

and secondary particle sources, such as energetic ions,4 neu-

trons,3 and positrons.5 It is therefore critical to understand

what controls the generation of relativistic electrons in rele-

vant regimes of laser-plasma interactions.

It is well recognized that the regime in which a relativisti-

cally intense laser pulse irradiates a sub-critical plasma is opti-

mal for generating relativistic electrons. The pulse can

propagate through such a plasma, which enables an extended

interaction length with the electrons. In experiments aimed at

x-ray generation, this regime is deliberately achieved by using

an expanding gas jet.2 This regime can also naturally arise in

experiments with solid density targets irradiated by a powerful

laser pulse due to the presence of a prepulse.4 The prepulse of-

ten delivers a considerable amount of energy, causing the

front of the target to expand and form an extended subcritical

preplasma prior to the arrival of the main pulse.

The important role played by the interaction of the main

pulse with the preplasma in generating an energetic electron

population in experiments with initially solid-density targets was

however not immediately recognized. This is in part due to the

fact that in some setups the role of the prepulse can also be detri-

mental. It is the case in experiments aimed at ion acceleration,

where the pre-expansion at the surface of a thick bulk target

caused by the prepulse significantly reduces the effectiveness of

ion acceleration.6,7 Recently, the focus of the ion acceleration

research has markedly shifted towards those regimes in which

the target becomes transparent to the main relativistically intense

pulse and the electron acceleration and heating can be fully uti-

lized.8,9 Such a regime is achieved by employing an initially

ultra-thin target that significantly expands during the pre-pulse

and forms a relativistically transparent plasma extending many

wavelengths along the direction of the laser beam propagation.

The same regime has also been used to generate energetic elec-

trons that are subsequently converted into a short neutron beam.3

How energetic electrons are generated strongly depends

on the duration of the main laser pulse. In most setups aimed

at producing secondary particle sources, the laser pulse irra-

diates the plasma over a time period that is longer than the

characteristic electron response time. This regime is the con-

trary to the regime used for the wakefield acceleration.10 As

a consequence, the laser pulse establishes a quasi-steady-

state structure in the plasma that slowly evolves on an ion

time scale.11–13 By expelling some of the electrons radially,

the laser creates a positively charged elongated channel in

the plasma with quasi-static transverse and longitudinal elec-

tric fields. New electrons are continuously injected into the

channel, typically through the channel opening,14,15 and then

get accelerated and pushed forward by the laser pulse in the

presence of the quasi-static fields.
Note: Paper TI3 2, Bull. Am. Phys. Soc. 60, 305 (2015).
a)Invited speaker.
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The described regime is often broadly referred to as the

direct laser acceleration regime. In terms of applications, it is

critical to know what controls the electron energy gain.

Early work on the topic16 indicated that the transverse static

electric field can be beneficial for enhancing the electron

energy gain beyond what is expected from a single electron

irradiated by a plane wave in a vacuum. Recently, there has

been a renewed interest in the direct laser acceleration of

electrons, as experimental groups shift their focus to regimes

of relativistic transparency and also try to optimize the pre-

plasma conditions using multiple laser pulses.17 Recent sim-

ulation results have also demonstrated that the direct laser

acceleration can be important in the context of the laser

wakefield acceleration.18,19

In this paper, we examine the role played by transverse

and longitudinal quasi-static electric fields present in a

plasma channel in enhancing the electron energy gain from

the laser pulse. We also address the role of electron injection

into the laser beam and the limitations imposed by the super-

luminosity of the laser field that is induced by the channel.

This paper is based on a body of work performed by us over

the last couple of years14,20–24 and is designed to serve in

part as an overview of some novel aspects of the direct laser

acceleration. Here, we focus on illustrating the key qualita-

tive concepts and phenomena, while providing references to

those publications where one can find a more detailed techni-

cal analysis.

II. STEADY-STATE CHANNEL

The nature of the laser-plasma interaction strongly

depends on the amplitude of the irradiating laser pulse and

on the electron density of the irradiated plasma. It is conven-

ient to use a dimensionless parameter

a0 �
jejE0

mexc
(1)

to quantify the impact of a laser pulse with an electric field

amplitude E0 and frequency x on electron motion. Here, c is

the speed of light, and e and me are the electron charge and

mass, respectively. The parameter a0 is often referred to as

the normalized laser amplitude. It is roughly the ratio of the

transverse electron momentum induced by the oscillating

laser electric field to mec. Therefore, a laser pulse with a nor-

malized amplitude of a0 � 1 would induce relativistic elec-

tron motion.

The electron density in the plasma determines whether

the laser pulse can propagate into the plasma and accelerate

plasma electrons. The cut-off for a pulse with a0 � 1 occurs

at a critical density

nc �
mex2

4pe2
; (2)

for which the electron plasma frequency xpe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnee2=me

p
becomes equal to the frequency of the laser pulse. At laser

amplitudes a0 � 1, the plasma can become relativistically

transparent at electron densities exceeding the critical den-

sity nc. The adjusted critical density in this case depends on

the amplitude of the irradiating laser pulse, because the

effect is caused by the relativistic motion of electrons in the

strong field of the laser.

The optimal regime for generating copious relativistic

electrons is then the regime in which a relativistic amplitude

laser pulse ða0 > 1Þ irradiates an extended sub-critical

plasma ðne < ncÞ. In order to illustrate the key features of

the laser-plasma interaction in this regime, we have per-

formed a two-dimensional (2D) particle-in-cell (PIC) simula-

tion whose results are shown in Fig. 1. In this simulation, a

uniform sub-critical plasma with the initial electron density

ne ¼ 0:01nc is irradiated by a laser beam with wavelength

k¼ 1 lm whose amplitude ramps up to a0¼ 8.5 and then

remains constant. The laser pulse propagates along the x-axis

and it is linearly polarized, with the laser electric field polar-

ized in the (x, y)-plane. The ions were kept immobile in this

simulation to distinguish more clearly the effect of the long

laser pulse. Detailed parameters of the simulation are given

in the Appendix.

As the pulse enters the plasma, its ponderomotive force

begins to expel some of the electrons out of the laser pulse in

FIG. 1. Steady-state channel produced in a sub-critical plasma by a long laser pulse. The panels show snapshots at 1 ps of electron density (upper left), total

electron current density (upper right), transverse and longitudinal electric fields (lower left), and transverse magnetic field (lower right) averaged over ten laser

periods. The upper left panel also shows instantaneous total electric field.
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the transverse direction producing a channel. The un-

neutralized ion charge generates a counteracting force that,

in the example shown in Fig. 1, prevents the channel from

becoming fully evacuated.

The laser pulse produces and maintains a steady-state

channel if the pulse duration exceeds the characteristic elec-

tron response time. The snapshot of the electron density in

Fig. 1 taken at 1 ps illustrates such a channel. The positively

charged elongated channel generates quasi-static transverse

and longitudinal electric fields shown in the lower-left panel

of Fig. 1. The fields have been averaged over ten laser peri-

ods, and they are normalized to the electric field amplitude

E0 of a plane wave with a0¼ 8.5, which is essentially the

amplitude of the electric field in the laser pulse. The time-

averaged electric fields are relatively small compared to the

amplitude of the oscillating laser electric field that is also

present in the channel.

Once the steady-state channel structure is established,

new electrons are continuously injected into the channel

through the opening. This is particularly clear from the snap-

shot of the time-averaged current density, whose absolute

value is shown in the upper-right panel of Fig. 1. The

injected electrons are accelerated and pushed forward by the

laser pulse, producing a steady-state electron current in the

channel. This current generates a quasi-static transverse

magnetic field directed in and out of the plane of the simula-

tion (along the z-axis). The return current flowing outside of

the channel causes for the magnetic field to be localized

inside the channel, as shown in the lower-right panel of Fig.

1. The plotted time-averaged field is normalized to the mag-

netic field amplitude B0 of a plane wave with a0¼ 8.5. The

quasi-static magnetic field is also relatively weak in this re-

gime, as it is less that 1% of the magnetic field in the laser

pulse.

The presented example illustrates that, in a sub-critical

plasma irradiated by a long laser pulse, the electron accelera-

tion takes place in a positively charged channel in the pres-

ence of extended transverse quasi-static electric and

magnetic fields and a localized quasi-static longitudinal elec-

tric field. These fields are relatively small compared to the

fields in the laser pulse, not exceeding a few percent. It is

then somewhat unexpected that, for example, the transverse

electric field can significantly enhance the electron energy

gain.16 As we show in Secs. IV and V, the transverse and

longitudinal electric fields can synergistically enhance the

electron energy gain, with a well-pronounced threshold, well

beyond the energy gain that one would expect in the absence

of these fields.

III. ELECTRON ACCELERATION IN A VACUUM

In order to provide the context for the discussion of the

electron acceleration in the channel, we briefly review the

key features of the electron motion in a vacuum where no

static electric or magnetic fields are present. Specifically, we

consider a single electron that is initially at rest. It is irradi-

ated by a plane electromagnetic wave whose normalized am-

plitude gradually increases from zero to a0. In what follows,

we refer to this regime as the vacuum regime.

The electron moves according to the following

equations:

dp

dt
¼ �jejE� jej

cmec
p� B½ �; (3)

dr

dt
¼ c

c
p

mec
; (4)

where c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2=m2

ec2
p

is the relativistic factor, r and p

are the electron position and momentum, and t is the time. In

the regime under consideration, E and B are the electric and

magnetic fields of the wave. It is convenient to express these

fields in terms of a normalized vector potential a

Ewave ¼ �
mec

jej
@a

@t
; (5)

Bwave ¼
mec2

jej r � a½ �: (6)

In the case of a plane wave with wave-length k propagating

along the x-axis, the vector potential is only a function of a

normalized phase

n ¼ 2p
k

x� ctð Þ: (7)

Without any loss of generality, we assume that the laser elec-

tric field is polarized along the y-axis. In this case, the vector

potential a only has a y-component. We consider a pulse

with a ¼ a0FðnÞ sinðnÞ, where a0 is the maximum normal-

ized amplitude, and FðnÞ is a slowly varying envelope that

ramps up from zero to unity.

Figure 2 shows an electron trajectory for a pulse with

a0¼ 8.5 obtained by solving Eqs. (3) and (4) numerically. It

illustrates the qualitative change that takes place at relativis-

tic wave amplitudes of a0 � 1. At a0 � 1, the dominant

force experienced by the electron is the force from the elec-

tric field of the wave. As a result, the electron oscillates

across the laser pulse, while its longitudinal displacement is

negligible. At a0 � 1, the momentum oscillations induced by

the laser electric field become relativistic and, as a conse-

quence of this, the Lorentz force becomes important. This

force causes longitudinal electron motion that leads to a tra-

jectory shown in Fig. 2.

FIG. 2. Trajectory of an electron accelerated in a vacuum by a plane linearly

polarized wave with a0¼ 8.5. The color coding is the electron longitudinal

momentum.
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Even though the energy from the laser pulse is trans-

ferred to the transverse electron oscillations, the Lorentz

force converts most of this energy into the longitudinal elec-

tron motion. Indeed, an analytical solution of Eqs. (3) and

(4) yields25

px=mec ¼ a2=2; (8)

py=mec ¼ a: (9)

The electron moves along a parabola in the momentum

space, with px � jpyj for a0 � 1. The maximum c-factor

that the electron can reach is thus given by

cvac ¼ 1þ a2
0=2: (10)

The change in the longitudinal electron momentum along the

electron trajectory is shown in Fig. 2.

The energy gain is limited by the dephasing between the

electron and the wave. This aspect is illustrated in Fig. 3,

where the electron trajectory and the c-factor are shown as

functions of the phase variable n. In the upper panel, the

color-coding shows the amplitude of the laser electric field

normalized to its maximum amplitude E0. The phase of the

wave at the electron location, n, continuously decreases,

because the electron longitudinal velocity is less than the

phase velocity c. The electron, shown with a circle, is slip-

ping with respect to the laser wave fronts, thus moving to the

left in the upper panel. At n=2p ¼ �12, the electron trans-

verse velocity (shown with arrows) is anti-parallel to the

laser electric field, so the electron is gaining energy from the

laser pulse. As the electron continues to slip, the laser elec-

tric field eventually changes its sign at n=2p ¼ �12:25 and

becomes positive. At this point, the electron transverse ve-

locity is still positive, and the electron starts to lose its

energy. This positive field continues to reduce the transverse

electron velocity until it becomes negative at n=2p ¼ �12:5,

at which point the electron begins to gain energy again. The

electron experiences energy gain twice every laser cycle, as

evident from the plot of the c-factor in Fig. 3. It is worth

pointing out that the electron comes momentarily to a com-

plete stop also twice every laser cycle. The longitudinal

distance that the electron travels between the stops to

achieve c ¼ cvac is much longer than the laser wavelength

due to the fact that the electron is moving forward and it can

be estimated as cvack=4.

The discussed mechanism of electron acceleration and

energy gain in the vacuum regime suggests that, in principle,

there are two alternatives for further enhancing the electron

energy gain. One option is to decrease the dephasing

between the electron and the wave, allowing the transverse

electron velocity to remain antiparallel to the laser electric

field for longer in terms of the actual time. The second option

is to change the oscillations of the transverse velocity, so

that there is a net energy gain by the electron after a

laser cycle. In what follows, we show how these scenarios

can be realized utilizing relatively weak static longitudinal

and transverse electric fields.

IV. ROLE OF THE QUASI-STATIC LONGITUDINAL
ELECTRIC FIELD

As discussed in Sec. II, one of the key features of the

steady-state channel is the continuous injection of new elec-

trons through the channel opening with a quasi-static longi-

tudinal electric field. This aspect raises the question of the

impact of the quasi-static longitudinal electric field on subse-

quent electron energy gain during acceleration by the laser

pulse along the channel.

In order to pinpoint the effect of the longitudinal electric

field, we begin by considering electron motion in a vacuum

using the same setup as in Sec. III, but with an added narrow

region Dx of a uniform longitudinal static electric field E	.
Figure 4 shows numerical solutions of Eqs. (3) and (4) for

E	 ¼ �0:05E0 and Dx ¼ 2k, where E0 is the electric field

amplitude of the laser pulse. The laser pulse amplitude is

again a0¼ 8.5 following a gradual initial ramp-up. The dif-

ference between the two examples shown in Fig. 4 is the

location of the field region along the electron trajectory. In

the first example (left panel), the interaction takes place

when the electron momentum is close to its maximum value.

The subsequent change in the maximum electron momentum

after the interaction is insignificant. This result is in

FIG. 3. Electron trajectory (upper panel) and the c-factor (lower panel) as

functions of the phase variable n in a pulse with a0¼ 8.5. The color coding

is the amplitude of the laser electric field. The arrows show the direction of

the transverse electron velocity along the trajectory.

FIG. 4. Momentum of an electron before, during, and after crossing a region

with a static electric field E	 ¼ �0:05E0 that is Dx ¼ 2k long. The only dif-

ference between the two cases is the location of the field region.
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agreement with the expectation that the localized field we

are considering is too weak to transfer significant energy to

the electron. In the second example (right panel), the interac-

tion takes place as the electron comes to a stop. In stark con-

trast to the previous example, the maximum electron energy

more than doubles during the motion in the wave after the

interaction.

The key role of the longitudinal electric field in these

examples is not to directly increase the electron energy, but

rather to decrease the electron dephasing with the wave. We

define the dephasing

R � � 1

x
dn
ds

(11)

as the rate at which the wave phase at the electron location,

n, changes with proper time, s, defined as

ds
dt
¼ 1

c
: (12)

It follows directly from the definition of n given in Eq. (7)

that

R ¼ c� px=mec: (13)

The quantity c� px=mec is conserved by Eqs. (3) and (4) in

the absence of the static electric field, which means that the

dephasing defined by Eq. (11) is constant before and after

the interaction with the longitudinal field. It can also be

shown that during the interaction the static field reduces the

dephasing at the rate14,22

dR

dn
¼ jejE	

mec
; (14)

which is independent of the laser pulse amplitude.

The reduced dephasing allows the electron to spend

more time being accelerated by the wave and thus gain more

energy from the laser pulse. As shown in Fig. 3, the accelera-

tion continues before the phase decreases by Dn ¼ �p=2. A

reduction in the dephasing then means that the corresponding

proper time interval Ds of electron acceleration is indeed

longer [see Eq. (11)]. The maximum c-factor that the elec-

tron with reduced dephasing achieves14,22 is

cmax 
 R�1cvac: (15)

Not all parts of the electron trajectory are equivalent in

terms of the dephasing change induced by the longitudinal

field. The reason for that is the strong dependence of the

dephasing on the longitudinal momentum. For simplicity, let us

assume that the electric field instantaneously increases the lon-

gitudinal momentum by Dpx. Prior to the interaction, we have

R ¼ c� px=mec 
 p2
y=2px ¼ 1: (16)

Here, we used expressions (8) and (9) for the electron momen-

tum in the vacuum regime. Assuming that Dpx is smaller than

px and py, we find from Eq. (13) that the dephasing is reduced to

R 
 1� Dpx=px: (17)

Evidently, the most favorable parts of the electron trajectory

for reducing the dephasing are those parts where the longitu-

dinal momentum is the lowest. This aspect is at work in the

two examples shown in Fig. 4, where the dephasing drops to

R¼ 0.47 on the right and only to R¼ 0.87 on the left. The

resulting energy increase in both cases is in good agreement

with Eq. (15).

In order to examine how this mechanism is realized in a

plasma channel, we have performed a 2D PIC simulation in

which a long laser pulse with an electric field polarized per-

pendicular to the plane of the simulation irradiates a plasma

slab with ne ¼ 0:05nc. Detailed parameters of the simulation

are given in the Appendix. The normalized laser amplitude

is a0¼ 8.5, so the c-factor in the vacuum regime would be

limited by cvac 
 37. However, the electron spectrum in the

plasma, as shown in Fig. 5, has a pronounced energetic elec-

tron tail with c > cvac.

A trajectory of one of the energetic electrons is shown

in Fig. 6 together with a time-averaged electron density

FIG. 5. Snapshot of a normalized electron spectrum at t¼ 950 fs from a 2D

PIC simulation with a0¼ 8.5 and ne ¼ 0:05nc.

FIG. 6. Trajectory of an accelerated electron in a channel. The upper panel

shows the trajectory, with the color-coded c, on top of the time-averaged

electron density profile. The lower panel shows the trajectory, with the

color-coded dephasing rate R ¼ c� px=mec, on top of the time-averaged

longitudinal electric field. The field and the density are averaged over ten

laser periods at 850 fs.
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profile and longitudinal electric field. The electron is injected

into the channel near the opening and initially moves against

the laser pulse. The electron typical c-factor at this stage is

comparable to a0. The quasi-static negative electric field,

that is present in the channel opening, gradually turns the

electron around. As the electron starts to move in the direc-

tion of the laser pulse propagation, the regime becomes simi-

lar to that considered earlier in this section. The longitudinal

electric field causes the dephasing rate to decrease, as shown

in the lower panel of Fig. 6. Similarly to the simplified exam-

ple, the significant drop in the dephasing occurs as the c-fac-

tor reaches its minimum at t¼ 877 fs.

The energy increase takes place as the electron contin-

ues its longitudinal motion into the channel after leaving the

region with a negative quasi-static electric field. The reduced

dephasing is evident not only from the color-coding in the

lower panel of Fig. 6 but also from the lack of oscillations in

pz in Fig. 7. The electron c-factor peaks at t¼ 950 fs, roughly

20 lm after the energy increase began. It exceeds cvac by a

factor of 2.3. Most of the energy comes directly from the

laser electric field and not from the longitudinal field, as

shown in the upper panel of Fig. 7. The laser contribution to

the c-factor is calculated by integrating the work done by Ez

and normalizing it to mec2.

Role of the superluminal phase velocity

We have so far assumed that the phase velocity in the

laser pulse, vph, is equal to the speed of light, c. However,

the plasma in the channel and the channel itself cause disper-

sion, making the phase velocity superluminal, vph > c. The

effect of the superluminosity is a faster dephasing between

the electron and the wave, which results in lowering of the

energy gain from the wave.

The superluminosity must be taken into account if it

leads to a significant change in the dephasing. In general, the

dephasing is determined by the difference vph � vx. We can

then conclude that the superluminosity becomes important

for vph � c � c� vx, whereas we can set vph ¼ c for vph � c
� c� vx. Using the definitions R ¼ c� px=mec and vx

¼ px=cme, we find that

c� vx ¼ cR=c: (18)

In the case when vph ¼ c, the c-factor is given by Eq. (15).

Taking into account this estimate and the expression for

cvac, we find that the role of the superluminosity is negligible

for23

vph � c

c
� R2

a2
0

: (19)

Ultimately, the superluminosity sets a limit on the

energy gain from the wave. It follows from Eq. (19) that

there is a critical value for R ¼ c� px=mec, given by

R	 ¼ a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vph � c

c

r
: (20)

For R� R	, the dephasing between the electron and the

wave is determined primarily by the difference vph � c, and

the difference between the electron longitudinal velocity and

the speed of light is unimportant. This means that even if the

longitudinal electric field lowers R well below R	, the maxi-

mum c-factor that the electron can achieve will be approxi-

mately limited by

cmax 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

a0

c

vph � c

s
cvac; (21)

which was estimated from Eq. (15) by setting R ¼ R	.
In order to examine the conditions (19) and (21) for the

simulation shown in Fig. 6, we have plotted the wavefronts

in a window moving with the speed of light along the axis of

the channel. Figure 8 shows the wave electric field Ez on the

axis of the channel in a window that is 6k wide. The center

of the window, located at x ¼ x	, slides the entire length of

the channel shown in Fig. 6 (note that k¼ 1 lm in the simu-

lation). The two dashed lines indicate wavefront slopes for

vph � c ¼ 2� 10�3c and vph � c ¼ 2:5� 10�2c. Inside the

channel, we then approximately have vph � c ¼ 2� 10�3c.

The corresponding critical dephasing is R	 
 0:38, and the

maximum c that can be attained by accelerating electrons is

cmax 
 2:6cvac, which translates into cmax 
 98 for a0¼ 8.5.

In the light of these estimates, a closer look at the elec-

tron data shown in Figs. 6 and 7 reveals that the superlu-

minosity likely plays a role in limiting the electron energy

gain. The dephasing rate R shown in Fig. 6 falls to R 
 0:1
along the electron trajectory, which could lead to a factor of

ten increase in the c-factor compared to cvac for vph ¼ c.

However, our estimates show that reduction of the dephasing

FIG. 7. Electron c-factor and momentum components as functions of time

for the electron trajectory shown in Fig. 6. The upper panel also shows the

integrated contribution to the c-factor from the work done by the laser elec-

tric field.
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below R	 
 0:38 no longer leads to an enhancement of the

c-factor, capped at cmax 
 98, because of the superluminos-

ity. This is in good agreement with the c-profile shown in the

upper panel of Fig. 7.

Finally, it is worth pointing out that heating of the bulk

electrons in the channel to relativistic energies significantly

reduces the superluminosity. The phase velocity of a linear elec-

tromagnetic wave propagating through a cold non-relativistic

plasma with electron density ne is vph=c ¼ ð1� ne=ncÞ�1=2
.

We then should expect ðvph � cÞ=c 
 2:6� 10�2 for ne

¼ 0:05nc used in the simulation. The corresponding wave-

front should follow the right dashed line in Fig. 8. The actual

vph � c is smaller by an order of magnitude, which clearly

indicates that the critical density that determines the phase

velocity is effectively lowered by an order of magnitude due

to relativistic motion induced in the channel by the laser

pulse. This so-called relativistic transparency enables the

electron energy gain enhancement by reducing the superlu-

minosity and thus reducing the critical dephasing given

by Eq. (20).

V. ROLE OF THE QUASI-STATIC TRANSVERSE
ELECTRIC FIELD

Inside the channel, the electron acceleration by the laser

pulse takes place in the presence of a relatively weak quasi-

static transverse electric field. In order to examine the role

played by such a field, we consider just a single electron irra-

diated by a plane electromagnetic wave in a fully evacuated

cylindrical ion channel shown in Fig. 9.

The electron dynamics in this model is described by

Eqs. (3) and (4), where the electric and magnetic fields are

given. These fields are a superposition of the fields of the

wave given by Eqs. (5) and (6) and the electric field of the

channel

Echan
y ¼ mex

2
p0y=2jej; (22)

Echan
z ¼ mex

2
p0z=2jej; (23)

where xp0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=me

p
. We have assumed for simplicity

that the channel is an infinitely long uniform cylinder that

consists of immobile singly charged ions with density n0.

It can be shown that, as the electron moves along the

channel, the following quantity remains conserved:

I 0 ¼ c� px

mec
þ

x2
p0

4c2
y2 þ z2
� �

¼ const: (24)

This relation indicates that amplification of electron oscilla-

tions across the channel leads to a reduction of c� px=mec.

Since px is the dominant component of the electron momen-

tum, a significant reduction in c� px=mec implies a signifi-

cant increase in px. Therefore, relation (24) formally points

at a direct connection between enhancement of transverse

oscillations and a significant increase in the longitudinal

electron momentum.

The integral of motion (24) sets an upper limit for the

amplitude of the transverse oscillations across the channel.

The value of I 0 is determined by the initial conditions, so

that I0 ¼ 1 for an on-axis electron that is initially at rest. We

find from Eq. (24) that the amplitude of the electron oscilla-

tions cannot exceed

rmax ¼
k
p

x
xp0

(25)

for I 0 ¼ 1. The amplitude of the oscillations approaches

rmax as px=mec!1 and c� px=mec! 0.

It is important to distinguish transverse electron oscilla-

tions in the y and z directions, because the motion in the

y-direction is driven by the laser electric field, whereas the

motion in the z-direction is affected only by the electric field

of the channel. We first focus on the key aspects of the

driven electron oscillations. We consider an electron that has

no initial displacement or momentum in the z-direction, so

that the electron trajectory driven by the laser pulse remains

flat, with the electron moving only in the (x, y)-plane.

A. Driven motion across the channel

The equation for the electron motion across the channel

can be written in the form that resembles an equation for a

driven oscillator21

FIG. 8. Wavefronts in a window moving with the speed of light along the

axis of the channel. Here, x	 is the location of the center of the window. The

field is normalized to the electric field amplitude E0 of a plane wave with

a0¼ 8.5. The dashed lines represent wavefronts moving with two different

superluminal phase velocities vph.

FIG. 9. Setup used to examine the role of the transverse static electric field.

The laser electric field is polarized in the (x, y)-plane.
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d2y

ds2
þ X2y ¼ c

da

ds
; (26)

where

X �
ffiffiffiffiffiffiffi
c=2

p
xp0; (27)

and s is the proper time defined by Eq. (12). The wave am-

plitude is a function of the phase variable n that changes at

the rate

� 1

x
dn
ds
¼ c� px

mec
: (28)

There are two characteristic frequencies in this case: the fre-

quency of the oscillations induced by the field of the channel

electric field and the frequency of the oscillations induced by

the field of the laser pulse. The former is the natural fre-

quency X. The latter is equal to x in the vacuum regime,

because c� px=mec ¼ 1 and, as a result, dn=ds ¼ �x.

According to Eq. (24), the relation dn=ds 
 �x holds in

the presence of the transverse electric field as well, while

the amplitude of the transverse oscillations is much smaller

than rmax.

At low channel densities, such that X� x, the channel

electric field has a very little impact on the electron motion.

The frequency mismatch means that a resonant interaction

that can lead to an amplification of the transverse oscillations

is not possible. The electron motion is essentially the same

as in the vacuum regime, with c 
 cvac. The characteristic

amplitude of the transverse oscillations, estimated as Dy 

ca0=x from Eq. (26), is indeed much smaller than rmax for

X� x and c 
 cvac.

At higher channel densities for which the two character-

istic frequencies become comparable, X � x, the channel

electric field becomes capable of significantly changing the

phase of the transverse oscillations, which causes their

amplitudes to grow. The change of phase after significant

amplification of the transverse oscillations has already taken

place is illustrated in Fig. 10, where the electron trajectory

and the c-factor are shown as functions of the phase variable

n. In this example, the electron is initially at rest on the axis

of the channel (x ¼ y ¼ z ¼ 0) whose ion density corre-

sponds to xp0=x ¼ 0:016. The electron is irradiated by a

plane wave with aðnÞ ¼ a0 cosðnÞ and a0 ¼ 11:5. The upper

panel of Fig. 10 shows that the channel electric field changes

the oscillations of the transverse electron velocity, allowing

it to remain anti-parallel to the laser electric field over

extended segments of the electron trajectory marked with

white. As a result, there is a net energy gain each laser

cycle for �6:25 > n=2p > �8:75 that leads to a significant

increase in the relativistic c-factor well above what can be

achieved in the vacuum regime illustrated in Fig. 3. Note

that ðrmax �maxjyjÞ=rmax 
 5� 10�5 along this segment of

the electron trajectory. The example in Fig. 10 confirms that

a significant increase in the c-factor goes hand in hand with

the enhancement of the transverse oscillations.

In order to determine the conditions for the energy

enhancement, we have performed a parameter scan solving

Eqs. (3) and (4) numerically for a wide range of parameters

a0 and xp0=x that specify the fields acting on the electron. In

all the cases, the electron is initially at rest on the axis of the

channel, and the laser pulse amplitude gradually ramps up as

aðnÞ ¼ a0 exp½�ðn� n0Þ2=2r2� sinðnÞ; for n > n0;

a0 sinðnÞ; for n � n0;

(

(29)

where n0 ¼ �50 and r¼ 20. The maximum c-factor, cmax,

that the electron attains for different sets of parameters a0

and xp0=x is shown in Fig. 11, where cmax is normalized to

the maximum c-factor in the vacuum regime, cvac, for the

same laser amplitude a0.

The energy enhancement has a sharp threshold, as fur-

ther illustrated by the lineouts in Fig. 11 for three different

values of a0. The lineouts for a0 ¼ 8 and a0 ¼ 15 indicate

that the threshold and the energy gain above the threshold

are determined by a single dimensionless combination

G � a0xp0=x: (30)

The contours of constant G plotted in the upper panel of

Fig. 11 with dashed lines confirm that this is indeed a general

trend for a0 > 5.

The existence of the threshold that depends only on

a0xp0=x was first discovered in Ref. 20 and then explored in

more detail in Ref. 21. The dimensionless parameter G is the

ratio of the frequencies of oscillations induced by the field of

the channel and by the field of the laser prior to a significant

energy enhancement. Indeed, taking into account that the

electron c-factor in this regime is essentially cvac, we find

that X=x / a0xp0=x for a0 � 1. Currently, the dependence

of cmax on G above the threshold remains a robust numerical

observation that requires an in-depth theoretical analysis.

B. Role of electron injection

In the scan presented in Fig. 11, we have considered the

case where initially the electron is already in the channel, but

FIG. 10. Trajectory (upper panel) and the c-factor (lower panel) of an elec-

tron irradiated by a plane wave with a0 ¼ 11:5 in a channel whose ion den-

sity corresponds to xp0=x ¼ 0:016. The color coding is the amplitude of the

laser electric field. The arrows show the direction of the transverse electron

velocity along the trajectory.
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the laser pulse has not yet reached the electron location lon-

gitudinally. On the other hand, in the steady-state channel

discussed in Sec. II and illustrated in Fig. 1, the electrons are

injected into the channel from the side with the laser beam

already present in the channel. This raises the question

regarding the role of electron injection in determining both

the threshold and the energy gain.

We test the role of injection by seeding an electron with-

out any initial momentum into a plane wave with a given ini-

tial phase. Specifically, the wave amplitude is set to aðnÞ
¼ a0 sinðw0 � nÞ, where w0 is the phase of the laser pulse at

the moment of injection defined as n¼ 0. The electron is

placed onto the channel axis at the moment of injection.

Figure 12 shows how the maximum c-factor attained by the

electron depends on the injection phase w0 and the ion density

in the channel. We show only the range of initial phases

0 � w0 � p, because the plot for p � w0 � 2p is identical.

The energy enhancement threshold is present for all the

injection phases in Fig. 12, but the location of the threshold

is sensitive to the injection phase. The threshold is the lowest

when initially the electric field of the wave is equal to zero,

Ewave¼ 0. Since the wave amplitude is fixed, this means that

the injection phase determines the value of the parameter G
at the threshold. It should also be pointed that the energy

gain increases as the threshold becomes lower. Therefore,

we can conclude that proper electron injection into the laser

beam can significantly enhance the electron energy gain

from the wave, while lowering the corresponding threshold

determined by the product a0xp0=x.

C. Free oscillations across the channel

We have so far deliberately limited the electron motion

to the plane of the driven oscillations by placing the electron

initially on the axis of the channel. Small off-axis displace-

ments in the absence of the laser pulse lead to small free

oscillations across the channel, since the restoring force is no

longer equal zero. In what follows, we examine how the out-

of-plane oscillations evolve in the presence of a laser pulse

with relativistic amplitude a0 � 1.

The equation for the out-of-plane oscillations can be

directly obtained from Eq. (26) by taking into account that

the channel is cylindrically symmetric. By setting the right-

hand side to zero and replacing y with z, we obtain

d2z

ds2
þ X2y ¼ 0; (31)

which resembles an equation for an oscillator with a natural

frequency X.

The free oscillations along the z-axis are coupled to the

driven electron motion in the (x, y)-plane via the relativistic

c-factor, X / ffiffiffi
c
p

. As long as the amplitude of the free

oscillations remains small, the c-factor is determined pre-

dominantly by the driven motion. Taking the c-factor in the

vacuum regime shown in Fig. 3 as an example of the driven

motion, we can conclude that the driven motion affects

the natural frequency X in two ways: it increases the natural

frequency roughly by a factor of a0 for a0 � 1, and it

also strongly modulates the natural frequency. The first as-

pect has been discussed in detail earlier in this section, and

it is responsible for the onset of the significant energy

enhancement.

The modulation of the natural frequency can make the

free oscillations along the z-axis parametrically unstable.

FIG. 12. The maximum c-factor attained by injected electrons. The laser

amplitude in all the cases is a0¼ 8.5. The initial injection phase defines the

initial wave amplitude, a ¼ a0 sinðw0Þ.

FIG. 11. Maximum c-factor attained by an electron irradiated by a plane wave

with amplitude a0 in a channel with ion density n0 (xp0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pn0e2=me

p
). In

the upper panel, G ¼ a0xp0=x and cvac ¼ 1þ a2
0=2.
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The c-factor modulations effectively modulate the restoring

force acting on the oscillator described in Eq. (31). It is then

intuitively clear that the oscillations remain stable as long as

the modulation frequency is much higher than the natural

frequency X. The oscillations become unstable when the two

frequencies become comparable.

As already discussed, the driven electron motion below

the energy enhancement threshold can be approximated by

the solution for the vacuum regime. We again consider an

electron that is irradiated by a plane wave in the channel and

assume that the initial displacement is much smaller than

rmax. In this case, s 
 �n=x and we then find from the c pro-

file shown in Fig. 3 that the modulation frequency is

xmod 
 x. On the other hand, significantly below the thresh-

old, we have X� x, as evident from Fig. 11. Therefore, the

free oscillations should be stable below the threshold.

As we cross the threshold by increasing the ion density,

two important changes in the dependence of the c-factor on s
take place. The c-factor is significantly increased, which

greatly increases the natural frequency. In addition to that,

the modulations of the c-factor become less frequent. This is

because the peaks of enhanced c act as modulations, and

they take multiple laser cycles to develop. The combination

of these two factors changes the relation between the two

characteristic frequencies to X� xmod. We therefore con-

clude that the energy enhancement changes the stability of

the free oscillations, making them susceptible to the para-

metric instability.

A parameter scan over the same range of a0 and xp0=x
as in Fig. 11 reveals that there is a threshold for the amplifi-

cation of the free transverse oscillations.24 This threshold

matches the energy enhancement threshold (dashed line in

Fig. 11), because the energy enhancement triggers the

growth of the electron oscillations along the z-axis. The am-

plitude of the free oscillations grows until it becomes compa-

rable to rmax.

The amplitude of the driven oscillations, i.e., the oscilla-

tions along the y-axis, also has an enhancement threshold

that matches the energy enhancement threshold as well. We

find that, in general, the electron energy enhancement is

accompanied by a considerable enhancement of the trans-

verse oscillations across the channel, making the electron

trajectory considerably three-dimensional with the maximum

displacement comparable to rmax. To illustrate this point, we

show in Fig. 13 electron trajectories for a0¼ 8.5 and

xp0=x 
 0:24. These parameters are above the threshold

according to Fig. 11. In the upper panel, the electron has no

initial out-of-plane displacement, so its trajectory remains

flat. However, an initial displacement of Dz ¼ 0:2k in the

lower panel provides a necessary seed for the instability to

develop significant out-of-plane oscillations. As a result, a

non-planar electron trajectory quickly develops, accompany-

ing the energy enhancement.

VI. SUMMARY AND DISCUSSION

We have examined a regime in which a laser pulse with

relativistic intensity irradiates a sub-critical plasma over a

time period much longer than the characteristic electron

response time. It is shown that a steady-state channel is

formed in the plasma in this case with quasi-static transverse

and longitudinal electric fields. These fields, even though

they are much smaller than the electric field in the laser

pulse, profoundly alter the electron dynamics. The longitudi-

nal electric field reduces the longitudinal dephasing between

the electron and the wave. This allows the electron to gain

significantly more energy from the wave. The energy gain in

this regime is ultimately limited by the superluminosity of

the wave fronts induced by the plasma in the channel, even

though the relativistic transparency greatly reduces the role

of the plasma. The transverse electric field alters the oscilla-

tions of the transverse electron velocity. As a result, it can

remain anti-parallel to the laser electric field, which leads to

significant energy gain by the electron from the wave. We

showed that this process has a sharp threshold determined by

a single parameter, a0xp0=x. The threshold can be greatly

reduced, and the energy gain further enhanced by appropri-

ately injecting electrons into the laser pulse. The threshold

for the energy enhancement matches the threshold for the

onset of the parametric instability in the direction perpendic-

ular to the plane of the driven electron oscillation. Therefore,

the trajectories of electrons with enhanced energies eventu-

ally become non-planar if the interaction time and length

with the pulse are sufficient for the instability to develop.

The effect of the longitudinal electric field is akin to

pre-acceleration of electrons in the longitudinal direction.

Analysis of pre-accelerated electrons in a channel21 has

showed that pre-acceleration reduces the energy enhance-

ment threshold and increases the electron energy gain. This

FIG. 13. Electron trajectories with and without an initial displacement

(lower and upper panels) out of the plane of the driven oscillations. The

wave electric field is polarized in the (y, z)-plane (shown in light-blue).
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indicates that the transverse and longitudinal electric fields

can synergistically enhance the electron energy gain. Further

in-depth research is required to determine the energy scal-

ings and the key parameters that determine the electron

dynamics.

Finally, it should be pointed out that even though the

presented analysis was motivated by laser-plasma interac-

tions at significantly sub-critical plasma densities, most of

the results are much more general and they are not limited

just to the regime where xpe � x. Therefore, the analysis is

well suited to make meaningful predictions regarding elec-

tron acceleration in near-critical and over-critical plasmas,

provided that such plasmas are relativistically transparent to

the incoming high-intensity laser pulse.28,29 However, wave

propagation becomes a crucial aspect in this case, and it

should be addressed self-consistently30 taking into account

transverse laser pulse dimensions and its polarization.31,32
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APPENDIX: 2D PIC SIMULATION PARAMETERS

The snapshots shown in Figs. 1 and 6 are from two-

dimensional particle-in-cell simulations performed using an

open-source code EPOCH.26 In both simulations, the initial

electron density profile is given by

ne ¼
n0 exp½�ðx� x0Þ2=L2�; for x < x0;

n0; for x � x0;

(
(A1)

where x0 ¼ 5 lm and L¼ 6 lm. In Fig. 1, we set n0 ¼ 0:01nc,

whereas in Fig. 6, we set n0 ¼ 0:05nc. The electron popula-

tion is initialized using 10 macro-particles per cell. The ion

density is initially equal to the electron density, and the ion

density profile is initialized using 4 macro-particles per cell.

The electrons are initially cold, whereas the ions are immo-

bile throughout the simulation. The size of the domain in the

simulation shown in Fig. 1 is 180 lm (12 000 cells) along

the x-axis and 60 lm (1200 cells) along the y-axis. The size

of the domain in the simulation shown in Fig. 6 is 140 lm

(9500 cells) along the x-axis and 60 lm (1200 cells) along

the y-axis. The longitudinal resolution is chosen in agree-

ment with the criterion outlined in Ref. 27 in order to cor-

rectly compute the electron energy gain.

We use a laser pulse whose focal plane in the absence of

plasma is located at x¼ 0 lm. The laser fields have a

Gaussian profile along the y-axis, with the electric and mag-

netic fields in the focal plane given by

Ewave=E0 ¼ Bwave=B0 ¼ SðtÞ exp ð�y2=w2
0Þ; (A2)

where w0 ¼ 8:5 lm and the temporal profile is

SðtÞ ¼ exp½�ðt� t0Þ2=T2�; for t < t0;

1; for t � t0;

(
(A3)

with t0 ¼ 182:4 fs and T¼ 85 fs. In both simulations, the

laser wavelength is 1 lm, and the peak laser intensity at x ¼
y ¼ 0 lm is I ¼ 1020 W/cm2, which corresponds to a0¼ 8.5.

The normalizing amplitudes E0 and B0 are maximum electric

and magnetic fields in a plane wave with a0¼ 8.5. In the sim-

ulation shown in Fig. 1, the laser electric field has x and y
components, whereas the laser magnetic field has only a z-

component. In the simulation shown in Fig. 6, the laser elec-

tric field has only a z-component, whereas the laser magnetic

field has x and y components.
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